Skip to main content
Log in

Production of the Copepod Pseudodiaptomus forbesi Is Not Enhanced by Ingestion of the Diatom Aulacoseira granulata During a Bloom

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In 2016, a massive bloom of the chain-forming diatom Aulacoseira granulata occurred in the upper San Francisco Estuary, California, with chlorophyll concentrations up to 75 μg Chl L−1. In this study, quantitative PCR was used to investigate consumption of the bloom organism by the numerically dominant zooplankter Pseudodiaptomus forbesi (Copepoda: Calanoida) and to estimate the contribution of the bloom to egg production. Copepods were collected on four transects during May and June 2016; egg production rates were somewhat elevated above previous rates measured in the estuary. Ingestion of A. granulata was highest on the first sampling day, just after the peak of the bloom, ranging from 175 to 945 cells copepod−1 day−1. One month later ingestion rates dropped to 0–130 cells copepod−1 day−1, despite continued dominance of A. granulata in the plankton. Ingestion of A. granulata provided from 0 to 21% (median 1%) of the estimated daily carbon required for growth and reproduction of P. forbesi. Although the copepods probably obtained nutrition from a microbial food web stimulated by the bloom, monitoring data showed little demographic response to this bloom. Thus, a massive diatom bloom in an unproductive estuary provided only a minor stimulus through an abundant consumer to the pelagic food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alpine, Andrea E., and James E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnology and Oceanography 37 (5): 946–955. https://doi.org/10.4319/lo.1992.37.5.0946.

    Article  Google Scholar 

  • Amin, Roswati Md, Marja Koski, Ulf Båmstedt, and Charles Vidoudez. 2011. Strain-related physiological and behavioral effects of Skeletonema marinoi on three common planktonic copepods. Marine Biology 158 (9): 1965–1980. https://doi.org/10.1007/s00227-011-1706-7.

    Article  CAS  Google Scholar 

  • Arar, E.J., and G.B. Collins. 1997. Method 445.0 in vitro determination of chlorophyll a and pheophytin in marine and freshwater algae by fluorescence. Washington: U.S. Environmental Protection Agency.

    Google Scholar 

  • Ask, Jenny, Marko Reinikainen, and Ulf Bamstedt. 2006. Variation in hatching success and egg production of Eurytemora affinis (Calanoida, Copepoda) from the Gulf of Bothnia, Baltic Sea, in relation to abundance and clonal differences of diatoms. Journal of Plankton Research 28 (7): 683–694.

    Article  CAS  Google Scholar 

  • Ban, Syuhei, Carolyn Burns, Jacques Castel, Yannick Chaudron, Epaminondas Christou, Ruben Escribano, Serena Fonda Umani, Stephane Gasparini, Francisco Guerrero Ruiz, and Monica Hoffmeyer. 1997. The paradox of diatom-copepod interactions. Marine Ecology Progress Series 157: 287–293.

    Article  Google Scholar 

  • Barber, R.T., and M.R. Hiscock. 2006. A rising tide lifts all phytoplankton: growth response of other phytoplankton taxa in diatom-dominated blooms: a rising tide raises all phytoplankton. Global Biogeochemical Cycles 20: n/a. https://doi.org/10.1029/2006GB002726.

    Article  CAS  Google Scholar 

  • Barofsky, A., P. Simonelli, C. Vidoudez, C. Troedsson, J.C. Nejstgaard, H.H. Jakobsen, and G. Pohnert. 2010. Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. Journal of Plankton Research 32 (3): 263–272. https://doi.org/10.1093/plankt/fbp121.

    Article  CAS  Google Scholar 

  • Bowen, A., G. Rollwagen-Bollens, S.M. Bollens, and J. Zimmerman. 2015. Feeding of the invasive copepod Pseudodiaptomus forbesi on natural microplankton assemblages within the lower Columbia River. Journal of Plankton Research 37: 1089–1094. https://doi.org/10.1093/plankt/fbv078.

    Article  Google Scholar 

  • Bryant, M.E., and Arnold, J.D.. (2007). Diets of age-0 striped bass in the San Francisco Estuary, 1973-2002. California Fish and Game 93.

  • Buchan, Alison, Gary R. LeCleir, Christopher A. Gulvik, and José M. González. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nature Reviews Microbiology 12 (10): 686–698. https://doi.org/10.1038/nrmicro3326.

    Article  CAS  Google Scholar 

  • Bjærke, Oda, Per R. Jonsson, Asraful Alam, and Erik Selander. 2015. Is chain length in phytoplankton regulated to evade predation? Journal of Plankton Research 37: 1110–1119. https://doi.org/10.1093/plankt/fbv076.

    Article  Google Scholar 

  • Calbet, A., and E. Saiz. 2005. The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology 38: 157–167. https://doi.org/10.3354/ame038157.

    Article  Google Scholar 

  • Calbet, A., I. Trepat, R. Almeda, V. Saló, E. Saiz, Movilla Ji, M. Alcaraz, L. Yebra, and R. Simó. 2008. Impact of micro- and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments. Aquatic Microbial Ecology 50: 145–156. https://doi.org/10.3354/ame01171.

    Article  Google Scholar 

  • Canuel, E. A. 2001. Relations between river flow, primary production and fatty acid composition of particulate organic matter in San Francisco and Chesapeake Bays: a multivariate approach. Organic Geochemistry: 21.

  • Carstensen, Jacob, Riina Klais, and James E. Cloern. 2015. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuarine, Coastal and Shelf Science 162: 98–109. https://doi.org/10.1016/j.ecss.2015.05.005.

    Article  Google Scholar 

  • Cloern, J., A. Alpine, B. Cole, R. Wong, J. Arthur, and M. Ball. 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuarine, Coastal and Shelf Science 16 (4): 415–429.

    Article  Google Scholar 

  • Cloern, J.E., and A.D. Jassby. 2008. Complex seasonal patterns of primary producers at the land-sea interface. Ecology Letters 11 (12): 1294–1303. https://doi.org/10.1111/j.1461-0248.2008.01244.x.

    Article  Google Scholar 

  • Cloern, J.E., and A.D. Jassby. 2012. Drivers of change in estuarine-coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Reviews in Geophysics 50: 1–33.

    Article  Google Scholar 

  • Coffin, R.B., and J.H. Sharp. 1987. Microbial trophodynamics in the Delaware Estuary. Marine Ecology Progress Series 41: 253–266. https://doi.org/10.3354/meps041253.

    Article  Google Scholar 

  • Cole, J.C., S. Findlay, and M.L. Pace. 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10. https://doi.org/10.3354/meps043001.

    Article  Google Scholar 

  • Conley, D.J., and T.C. Malone. 1992. Annual cycle of dissolved silicate in Chesapeake Bay - implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series 81: 121–128.

    Article  CAS  Google Scholar 

  • Cullen, John J. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences 39. NRC Research Press: 791–803.

    Article  CAS  Google Scholar 

  • Cushing, D.H. 1989. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. Journal of Plankton Research 11 (1): 1–14.

    Article  Google Scholar 

  • Dahm, C.N., Parker, A.E., Adelson, A.E., Christman, M.A., and Bergamaschi, B.A.. 2016. Nutrient dynamics of the Delta: effects on primary producers. San Francisco Estuary & Watershed Science 14.

  • DeMott, W.R., and F. Moxter. 1991. Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance. Ecology 72 (5): 1820–1834.

    Article  Google Scholar 

  • Ducklow, H.W., D.L. Kirchman, H.L. Quinby, C.A. Carlson, and H.G. Dam. 1993. Stocks and dynamics of bacterioplankton carbon during the spring bloom in the eastern North Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 40 (1-2): 245–263. https://doi.org/10.1016/0967-0645(93)90016-G.

    Article  Google Scholar 

  • Dugdale, Richard C., Frances P. Wilkerson, Victoria E. Hogue, and Albert Marchi. 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuarine, Coastal and Shelf Science 73 (1-2): 17–29. https://doi.org/10.1016/j.ecss.2006.12.008.

    Article  Google Scholar 

  • Dugdale, Richard C., Frances P. Wilkerson, and Alexander E. Parker. 2016. The effect of clam grazing on phytoplankton spring blooms in the low-salinity zone of the San Francisco Estuary: a modelling approach. Ecological Modelling 340: 16. https://doi.org/10.1016/j.ecolmodel.2016.08.018.

    Article  CAS  Google Scholar 

  • Durbin, E.G., M.C. Casas, and T.A. Rynearson. 2012. Copepod feeding and digestion rates using prey DNA and qPCR. Journal of Plankton Research 34 (1): 72–82. https://doi.org/10.1093/plankt/fbr082.

    Article  CAS  Google Scholar 

  • Durbin, Edward G., Maria C. Casas, Tatiana A. Rynearson, and David C. Smith. 2008. Measurement of copepod predation on nauplii using qPCR of the cytochrome oxidase I gene. Marine Biology 153 (4): 699–707. https://doi.org/10.1007/s00227-007-0843-5.

    Article  CAS  Google Scholar 

  • Dutz, Jörg, Marja Koski, and Sigrún H. Jónasdóttir. 2008. Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnology and Oceanography 53 (1): 225–235.

    Article  CAS  Google Scholar 

  • Edmondson, W.T., G.C. Anderson, and G.W. Comita. 1962. Reproductive rate of copepods in nature and its relation to phytoplankton population. Ecology 43 (4): 625–634.

    Article  Google Scholar 

  • Engstrom-Ost, Jonna, Towe Holmborn, Andreas Brutemark, Hedvig Hogfors, Anu Vehmaa, and Elena Gorokhova. 2014. The effects of short-term pH decrease on the reproductive output of the copepod Acartia bifilosa - a laboratory study. Marine and Freshwater Behaviour and Physiology 47 (3): 173–183. https://doi.org/10.1080/10236244.2014.919096.

    Article  CAS  Google Scholar 

  • Fennel, Katja, and Emmanuel Boss. 2003. Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnology and Oceanography 48 (4): 1521–1534. https://doi.org/10.4319/lo.2003.48.4.1521.

    Article  Google Scholar 

  • Feyrer, F., B. Herbold, S.A. Matern, and P.B. Moyle. 2003. Dietary shifts in a stressed fish assemblage: consequences of a bivalve invasion in the San Francisco Estuary. Environmental Biology of Fishes 67 (3): 277–288.

    Article  Google Scholar 

  • Fleming, Richard H. 1939. The control of diatom populations by grazing. ICES Journal of Marine Science 14. Oxford University Press: 210–227.

    Article  Google Scholar 

  • Gast, R.J., M.R. Dennett, and D.A. Caron. 2004. Characterization of Protistan Assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 70 (4): 2028–2037. https://doi.org/10.1128/AEM.70.4.2028-2037.2004.

    Article  CAS  Google Scholar 

  • Gearty, A.J.. (2020). Mechanisms controlling productivity of a calanoid copepod in northern San Francisco Estuary. M.S. Thesis, San Francisco: San Francisco State University.

  • Ger, K.A., P. Urrutia-Cordero, P.C. Frost, L.A. Hansson, O. Sarnelle, A.E. Wilson, and M. Lurling. 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54: 128–144. https://doi.org/10.1016/j.hal.2015.12.005.

    Article  Google Scholar 

  • Ger, Kemal Ali, Timothy G. Otten, Rita DuMais, Toni Ignoffo, and Wim Kimmerer. 2018. In situ ingestion of Microcystis is negatively related to copepod abundance in the upper San Francisco Estuary. Limnology and Oceanography 63 (6): 2394–2410. https://doi.org/10.1002/lno.10946.

    Article  Google Scholar 

  • Gifford, Scott M., Gretchen Rollwagen-Bollens, and Stephen M. Bollens. 2007. Mesozooplankton omnivory in the upper San Francisco Estuary. Marine Ecology Progress Series 348: 33–46. https://doi.org/10.3354/meps07003.

    Article  CAS  Google Scholar 

  • Goldman, C.R., and Horne, A.J.. (1983). Limnology. International Student Edition. McGraw-Hill Education.

  • Guiry, M.D., and Guiry, G.M.. (2019). Aulacoseira granulata (Ehrenberg) Simonsen. AlgaeBase.

  • Hansen, Per J. 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Marine Ecology Progress Series 73: 253–261. https://doi.org/10.3354/meps073253.

    Article  Google Scholar 

  • Harfmann, Jennifer, Tomofumi Kurobe, Brian Bergamaschi, Swee Teh, and Peter Hernes. 2019. Plant detritus is selectively consumed by estuarine copepods and can augment their survival. Scientific Reports 9 (1): 9076. https://doi.org/10.1038/s41598-019-45503-6.

    Article  CAS  Google Scholar 

  • Heinle, D.R., R.P. Harris, J.F. Ustach, and D.A. Flemer. 1977. Detritus as food for estuarine copepods. Marine Biology 40 (4): 341–353. https://doi.org/10.1007/BF00395727.

    Article  Google Scholar 

  • Hogfors, Hedvig, Nisha H. Motwani, Susanna Hajdu, Rehab El-Shehawy, Towe Holmborn, Anu Vehmaa, Jonna Engstrom-Ost, Andreas Brutemark, and Elena Gorokhova. 2014. Bloom-forming Cyanobacteria support copepod reproduction and development in the Baltic Sea. PLoS One 9 (11): e112692. https://doi.org/10.1371/journal.pone.0112692.

    Article  CAS  Google Scholar 

  • Holmes, A.. 2018. High-throughput sequencing reveals unexpected phytoplankton prey of an estuarine copepod. M.S. Thesis, San Francisco: San Francisco State University.

  • Houde, E.D., and E.S. Rutherford. 1993. Recent trends in estuarine fisheries - predictions of fish production and yield. Estuaries 16 (2): 161–176.

    Article  Google Scholar 

  • Ianora, A., and A. Miralto. 2010. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 19 (3): 493–511. https://doi.org/10.1007/s10646-009-0434-y.

    Article  CAS  Google Scholar 

  • Ianora, A., S.A. Poulet, and A. Miralto. 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology 121 (3): 533–539.

    Article  Google Scholar 

  • Ianora, A., S.A. Poulet, A. Miralto, and R. Grottoli. 1996. The diatom Thalassiosira rotula affects reproductive success in the copepod Acartia clausi. Marine Biology 125 (2): 279–286.

    Article  Google Scholar 

  • Interagency Ecological Program. (2020). Environmental monitoring program: phytoplankton. California Department of Water Resources. Interagency Ecological Program (IEP).

  • Irigoien, Xabier, Roger P. Harris, Hans M. Verheye, Pierre Joly, Jeffrey Runge, Michel Starr, David Pond, Robert Campbell, Rachael Shreeve, Peter Ward, Amy N. Smith, Hans G. Dam, William Peterson, Valentina Tirelli, Marja Koski, Tania Smith, Derek Harbour, and Russell Davidson. 2002. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419 (6905): 387–389. https://doi.org/10.1038/nature01055.

    Article  CAS  Google Scholar 

  • Jakobsen, Hans H., and Stiig Markager. 2016. Carbon-to-chlorophyll ratio for phytoplankton in temperate coastal waters: seasonal patterns and relationship to nutrients. Limnology and Oceanography 61 (5): 1853–1868. https://doi.org/10.1002/lno.10338.

    Article  Google Scholar 

  • Jassby, A.D. 2008. Phytoplankton in the upper San Francisco Estuary: recent biomass trends, their causes and their trophic significance. San Francisco Estuary and Watershed Science 6 (1): 2.

    Article  Google Scholar 

  • Jones, Ruth H., and Kevin J. Flynn. 2005. Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307 (5714): 1457–1459. https://doi.org/10.1126/science.1107767.

    Article  CAS  Google Scholar 

  • Kagami, Maiko, Nico R. Helmsing, and Ellen van Donk. 2011. Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms. Hydrobiologia 659 (1): 49–54. https://doi.org/10.1007/s10750-010-0274-z.

    Article  CAS  Google Scholar 

  • Kagami, Maiko, Takehito Yoshida, Tek Gurung, and Jotaro Urabe. 2002. Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments. Oecologia 133 (3): 356–363. https://doi.org/10.1007/s00442-002-1035-0.

    Article  Google Scholar 

  • Kayfetz, K., and Wim J. Kimmerer. 2017. Abiotic and biotic controls on the copepod Pseudodiaptomus forbesi in the upper San Francisco Estuary. Marine Ecology Progress Series 581. Marine Ecology Progress Series: 85–101.

    Article  CAS  Google Scholar 

  • Kilham, Peter. 1971. A hypothesis concerning silica and the freshwater planktonic diatoms1. Limnology and Oceanography 16 (1): 10–18. https://doi.org/10.4319/lo.1971.16.1.0010.

    Article  Google Scholar 

  • Kilham, Peter, Susan S. Kilham, and Robert E. Hecky. 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography 31 (6): 1169–1181. https://doi.org/10.4319/lo.1986.31.6.1169.

    Article  Google Scholar 

  • Kimmerer, W.J. 2005. Long-term changes in apparent uptake of silica in the San Francisco estuary. Limnology and Oceanography 50 (3): 793–798.

    Article  CAS  Google Scholar 

  • Kimmerer, W.J. 2008. Losses of Sacramento River Chinook salmon and delta smelt to entrainment in water diversions in the Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science 6: 2.

    Google Scholar 

  • Kimmerer, W.J., J.R. Burau, and W.A. Bennett. 1998. Tidally-oriented vertical migration and position maintenance of zooplankton in a temperate estuary. Limnology and Oceanography 43 (7): 1697–1709. https://doi.org/10.4319/lo.1998.43.7.1697.

    Article  Google Scholar 

  • Kimmerer, W.J., A.E. Parker, U. Lidström, and E.J. Carpenter. 2012. Short-term and interannual variability in primary production in the low-salinity zone of the San Francisco Estuary. Estuaries and Coasts 35 (4): 913–929. https://doi.org/10.1007/s12237-012-9482-2.

    Article  CAS  Google Scholar 

  • Kimmerer, Wim J., Ellen Gartside, and James J. Orsi. 1994. Predation by an introduced clam as the likely cause of substantial declines in zooplankton of San Francisco Bay. Marine Ecology Progress Series 113: 81–93 JSTOR.

    Article  Google Scholar 

  • Kimmerer, Wim J., Ignoffo, T. R., Bemowski, B, Modéran, J, Holmes, A, and Bergamaschi, B.A.. 2018. Zooplankton dynamics in the cache slough complex of the Upper San Francisco Estuary. San Francisco Estuary and Watershed Science 16. https://doi.org/10.15447/sfews.2018v16iss3art4.

  • Kimmerer, Wim J., Edward S. Gross, Anne M. Slaughter, and John R. Durand. 2019. Spatial subsidies and local mortality of an estuarine copepod revealed using a box model. Estuaries and Coasts 42 (1): 218–236. https://doi.org/10.1007/s12237-018-0436-1.

    Article  CAS  Google Scholar 

  • Kimmerer, Wim J., Toni R. Ignoffo, Karen R. Kayfetz, and Anne M. Slaughter. 2017. Effects of freshwater flow and phytoplankton biomass on growth, reproduction, and spatial subsidies of the estuarine copepod Pseudodiaptomus forbesi. Hydrobiologia 807: 113–130. https://doi.org/10.1007/s10750-017-3385.

    Article  Google Scholar 

  • Kimmerer, Wim J., Toni R. Ignoffo, Anne M. Slaughter, and Alison L. Gould. 2014. Food-limited reproduction and growth of three copepod species in the low-salinity zone of the San Francisco Estuary. Journal of Plankton Research 36 (3): 722–735. https://doi.org/10.1093/plankt/fbt128.

    Article  Google Scholar 

  • Kimmerer, Wim J., and Janet K. Thompson. 2014. Phytoplankton growth balanced by clam and zooplankton grazing and net transport into the low-salinity zone of the San Francisco Estuary. Estuaries and Coasts 37 (5): 1202–1218.

    Article  CAS  Google Scholar 

  • Kimmerer, W J., and Slaughter, A. M.. 2016. Fine-scale distributions of Zooplankton in the Northern San Francisco Estuary. San Francisco Estuary and Watershed Science 14. https://doi.org/10.15447/sfews.2016v14iss3art2.

  • Kimmerer, Wim J. 2006. Response of anchovies dampens effects of the invasive bivalve Corbula amurensis on the San Francisco Estuary foodweb. Marine Ecology Progress Series 324: 207–218. https://doi.org/10.3354/meps324207.

    Article  CAS  Google Scholar 

  • King, R.A., D.S. Read, M. Traugott, and W.O.C. Symondson. 2008. Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17 (4): 947–963. https://doi.org/10.1111/j.1365-294X.2007.03613.x.

    Article  CAS  Google Scholar 

  • Kleppel, Gs. 1993. On the diets of calanoid copepods. Marine Ecology Progress Series 99: 183–195. https://doi.org/10.3354/meps099183.

    Article  Google Scholar 

  • Koski, Marja, and Christian Wexels Riser. 2006. Post-bloom feeding of Calanus finmarchicus copepodites: selection for autotrophic versus heterotrophic prey. Marine Biology Research 2 (2): 109–119. https://doi.org/10.1080/17451000600684367.

    Article  Google Scholar 

  • Kress, E.S. 2012. Phytoplankton abundance and community structure in the Sacramento and San Joaquin rivers. Master’s thesis, San Francisco: San Francisco State University.

  • Lashaway, A.R., and H.J. Carrick. 2010. Effects of light, temperature and habitat quality on meroplanktonic diatom rejuvenation in Lake Erie: implications for seasonal hypoxia. Journal of Plankton Research 32 (4): 479–490. https://doi.org/10.1093/plankt/fbp147.

    Article  CAS  Google Scholar 

  • Lauritano, Chiara, Ylenia Carotenuto, Antonio Miralto, Gabriele Procaccini, and Adrianna Ianora. 2012. Copepod population-specific response to a toxic diatom diet Edited by Myron Peck. PLoS One 7 (10): e47262. https://doi.org/10.1371/journal.pone.0047262.

    Article  CAS  Google Scholar 

  • Lehman, P.W. 1992. Environmental factors associated with long-term changes in chlorophyll concentration in the Sacramento-San-Joaquin Delta and Suisun Bay, California. Estuaries 15 (3): 335–348.

    Article  CAS  Google Scholar 

  • Liu, Hongbin, Mianrun Chen, Feng Zhu, and Paul J. Harrison. 2016. Effect of Diatom Silica content on copepod grazing, growth and reproduction. Frontiers in Marine Science 3. https://doi.org/10.3389/fmars.2016.00089.

  • Lonsdale, D.J., R.M. Cerrato, R. Holland, A. Mass, L. Holt, R.A. Schaffner, J. Pan, and D.A. Caron. 2009. Influence of suspension-feeding bivalves on the pelagic food webs of shallow, coastal embayments. Aquatic Biology 6: 263–279. https://doi.org/10.3354/ab00130.

    Article  Google Scholar 

  • Mann, K.H. 1993. Physical oceanography, food chains, and fish stocks: a review. ICES Journal of Marine Science 50 (2): 105–119. https://doi.org/10.1006/jmsc.1993.1013.

    Article  Google Scholar 

  • Mauchline, J. 1998a. Gut Food and Feeding. In Advances in Marine Biology, ed. J. H. S. Blaxter, Southward, A. J., and P. A. Tyler, 33:139–172. The biology of calanoid copepods. San Diego: Academic Press.

  • Mauchline, J. 1998b. Physiology. In Advances in marine biology: the biology of calanoid copepods, ed. J. H. S. Blaxter, A. J. Southward, and P. A. Tyler, 33:176–219. San Diego: Academic Press.

  • Mayama, S., Katoh, K., Omori, H., and Seino, S.. 2006. Diatoms part 2: Preparation of slides. Science and Education. Diatom Project.

  • Menden-Deuer, Susanne, and Evelyn J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45 (3): 569–579. https://doi.org/10.4319/lo.2000.45.3.0569.

    Article  CAS  Google Scholar 

  • Meyer, B., X. Irigoien, M. Graeve, R.N. Head, and R.P. Harris. 2002. Feeding rates and selectivity among nauplii, copepodites and adult females of Calanus finmarchicus and Calanus helgolandicus. Helgoland Marine Research 56 (3): 169–176. https://doi.org/10.1007/s10152-002-0105-3.

    Article  Google Scholar 

  • Meyer-Harms, Bettina, Xabier Irigoien, Robert Head, and Roger Harris. 1999. Selective feeding on natural phytoplankton by Calanus finmarchicus before, during, and after the 1997 spring bloom in the Norwegian Sea. Limnology and Oceanography 44 (1): 154–165. https://doi.org/10.4319/lo.1999.44.1.0154.

    Article  Google Scholar 

  • Miralto, A., G. Barone, G. Romano, S.A. Poulet, A. Ianora, G.L. Russo, I. Buttino, G. Mazzarella, M. Laabir, M. Cabrini, and M.G. Giacobbe. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402 (6758): 173–176. https://doi.org/10.1038/46023.

    Article  CAS  Google Scholar 

  • Nejstgaard, Jens C., Bent H. Hygum, Lars-Johan Naustvoll, and Ulf Båmstedt. 2001. Zooplankton growth, diet and reproductive success compared in simultaneous diatom- and flagellate-microzooplankton-dominated plankton blooms. Marine Ecology Progress Series 221: 77–91. https://doi.org/10.3354/meps221077.

    Article  Google Scholar 

  • Nejstgaard, Jens C., Marc E. Frischer, Paolo Simonelli, Christofer Troedsson, Markus Brakel, Filiz Adiyaman, Andrey F. Sazhin, and L. Felipe Artigas. 2008. Quantitative PCR to estimate copepod feeding. Marine Biology 153 (4): 565–577. https://doi.org/10.1007/s00227-007-0830-x.

    Article  CAS  Google Scholar 

  • Nixon, S.W. 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnology and Oceanography 33: 1005–1025.

    CAS  Google Scholar 

  • Nobriga, Matthew L. 2002. Larval delta smelt diet composition and feeding incidence: environmental and ontogenetic influences. California Fish & Game 88: 149–164.

    Google Scholar 

  • Orsi, J., and W. Mecum. 1986. Zooplankton distribution and abundance in the Sacramento-San Joaquin Delta in relation to certain environmental factors. Estuaries 9 (4): 326–339. https://doi.org/10.2307/1351412.

    Article  CAS  Google Scholar 

  • Orsi, J.J., and T.C. Walter. 1991. Pseudodiaptomus forbesi and P. marinus (Copepoda: Calanoida), the latest copepod immigrants to California’s Sacramento-San Joaquin Estuary. In Proceedings of the fourth international conference on Copepoda, ed. S. Nishida Uye and J.S. Ho, 553–562. Hiroshima: Bulletin of the Plankton Society of Japan.

    Google Scholar 

  • Owens, S., T.R. Ignoffo, J. Frantzich, A. Slaughter, and W. Kimmerer. 2019. High growth rates of a dominant calanoid copepod in the northern San Francisco Estuary. Journal of Plankton Research 41 (6): 939–954. https://doi.org/10.1093/plankt/fbz064.

    Article  CAS  Google Scholar 

  • Palmieri, B.. 2020. 2012 to 2016 EMP benthic invertebrate summary report. Environmental Monitoring Program Report. Department of Water Resources.

  • Pančić, Marina, Rocio Rodriguez Torres, Rodrigo Almeda, and Thomas Kiørboe. 2019. Silicified cell walls as a defensive trait in diatoms. Proceedings of the Royal Society B: Biological Sciences 286 (1901): 20190184. https://doi.org/10.1098/rspb.2019.0184.

    Article  CAS  Google Scholar 

  • Poister, David, Alison Schaefer, Andrew Baert, John Tracey, and Katelyn Richards. 2015. Stimulated rejuvenation of dormant Aulacoseira granulata (Bacillariophyta) by Gloeocystis planctonica (Chlorophyta) in a eutrophic river Edited by P. Kroth. Journal of Phycology 51 (2): 332–342. https://doi.org/10.1111/jpy.12277.

    Article  Google Scholar 

  • Queimalinos, Claudia P., Beatriz E. Modenutti, and Esteban G. Balseiro. 1998. Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake. Freshwater Biology 40 (1): 41–49. https://doi.org/10.1046/j.1365-2427.1998.00326.x.

    Article  Google Scholar 

  • Ray, Jessica L., Katrine S. Skaar, Paolo Simonelli, Aud Larsen, Andrey Sazhin, Hans H. Jakobsen, Jens C. Nejstgaard, and Christofer Troedsson. 2016. Molecular gut content analysis demonstrates that Calanus grazing on Phaeocystis pouchetii and Skeletonema marinoi is sensitive to bloom phase but not prey density. Marine Ecology Progress Series 542: 63–77. https://doi.org/10.3354/meps11560.

    Article  CAS  Google Scholar 

  • Richman, Sumner, and Jane N. Rogers. 1969. The feeding of Calanus Helgolandicus on synchronously growing populations of the marine diatom Ditylum Brightwellii1. Limnology and Oceanography 14 (5): 701–709. https://doi.org/10.4319/lo.1969.14.5.0701.

    Article  Google Scholar 

  • Runge, Jeffrey A. 1985. Relationship of egg production of Calanus pacificus to seasonal changes in phytoplankton availability in Puget Sound, Washington. Limnology and Oceanography 30 (2): 382–396. https://doi.org/10.4319/lo.1985.30.2.0382.

    Article  Google Scholar 

  • Ryther, J.H. 1969. Photosynthesis and fish production in the sea. Science 166 (3901): 72–76.

    Article  CAS  Google Scholar 

  • Schraga, T.S., Nejad, E.S., Martin, C.A., and Cloern, J.E.. 2018. USGS measurements of water quality in San Francisco Bay (CA), beginning in 2016. U.S. Geological Survey Data Release ver. 3.0, March 2020.

  • Sheppard, S.K., and J.D. Harwood. 2005. Advances in molecular ecology: tracking trophic links through predator-prey food-webs. Functional Ecology 19 (5): 751–762. https://doi.org/10.1111/j.1365-2435.2005.01041.x.

    Article  Google Scholar 

  • Sherr, Evelyn B., and Barry F. Sherr. 2007. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology Progress Series 352: 187–197. https://doi.org/10.3354/meps07161.

    Article  Google Scholar 

  • Sicko-Goad, L., E.F. Stoermer, and G. Fahnenstiel. 1986. Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from the anoxic sediments of Douglas Lake, Michigan. 1. Light microscopy and 14C uptake. Journal of Phycology 22 (1): 22–28. https://doi.org/10.1111/j.1529-8817.1986.tb02510.x.

    Article  Google Scholar 

  • Slater, S., and Baxter, R.. 2014. Diet, prey selection, and body condition of age-0 delta smelt, Hypomesus transpacificus, in the Upper San Francisco Estuary. San Francisco Estuary and Watershed Science 12. https://doi.org/10.15447/sfews.2014v12iss3art1.

  • Sommer, Ted, Chuck Armor, Randall Baxter, Richard Breuer, Larry Brown, Mike Chotkowski, Steve Culberson, Fredrick Feyrer, Marty Gingras, Bruce Herbold, Wim Kimmerer, Anke Mueller-Solger, Matt Nobriga, and Kelly Souza. 2007. The collapse of pelagic fishes in the upper San Francisco Estuary: El Colapso de los Peces Pelagicos en La Cabecera Del Estuario San Francisco. Fisheries 32 (6): 270–277. https://doi.org/10.1577/1548-8446(2007)32[270:TCOPFI]2.0.CO;2.

    Article  Google Scholar 

  • Sommer, Ted, Francine Mejia, Kathryn Hieb, Randall Baxter, Erik Loboschefsky, and Frank Loge. 2011. Long-term shifts in the lateral distribution of age-0 striped bass in the San Francisco Estuary. Transactions of the American Fisheries Society 140 (6): 1451–1459. https://doi.org/10.1080/00028487.2011.630280.

    Article  Google Scholar 

  • Straile, Dietmar. 1997. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnology and Oceanography 42 (6): 1375–1385.

    Article  Google Scholar 

  • Sullivan, L.J., and W.J. Kimmerer. 2013. Egg development times of Eurytemora affinis and Pseudodiaptomus forbesi (Copepoda, Calanoida) from the upper San Francisco Estuary with notes on methods. Journal of Plankton Research 35 (6): 1331–1338. https://doi.org/10.1093/plankt/fbt076.

    Article  Google Scholar 

  • Takano, Keishi, Seiki Igarashi, and Shuji Hino. 2004. Seasonal changes in silicon content of diatoms estimated from the ratio of particulate silicon to diatom volume under silicon sufficiency in diatom-rich Lake Barato. Limnology 5 (2): 115–120. https://doi.org/10.1007/s10201-004-0117-6.

    Article  CAS  Google Scholar 

  • Turner, J. T. (1984a). The feeding ecology of some zooplankters that are important prey items of larval fish. 7. NOAA Technical Report. National Marine Fisheries Service.

  • Turner, Jefferson T. 1984b. Zooplankton feeding ecology: contents of fecal pellets of the copepods Acartia tonsa and Labidocera aestiva from continental shelf waters near the mouth of the Mississippi River. Marine Ecology 5 (3): 265–282. https://doi.org/10.1111/j.1439-0485.1984.tb00125.x.

    Article  Google Scholar 

  • Turner, Jefferson T., and Edna Granéli. 1992. Zooplankton feeding ecology: grazing during enclosure studies of phytoplankton blooms from the west coast of Sweden. Journal of Experimental Marine Biology and Ecology 157 (1): 19–31.

    Article  Google Scholar 

  • U.S. Geological Survey. 2020. USGS Water Data for the Nation. U.S. Government. National Water Information System: Web Interface. May 27.

  • Walter, T.C. 1987. Review of the taxonomy and distribution of the demersal copepod genus Pseudodiaptomus (Calanoida: Pseudodiaptomidae) from southern Indo-Pacific waters. Australian Journal of Marine and Freshwater Research 38: 363–396.

    Article  Google Scholar 

  • Wilkerson, F.P., R.C. Dugdale, V.E. Hogue, and A. Marchi. 2006. Phytoplankton blooms and nitrogen productivity in San Francisco Bay. Estuaries and Coasts 29 (3): 401–416.

    Article  CAS  Google Scholar 

  • Woodworth-Jefcoats, Phoebe A., and Johanna L.K. Wren. 2020. Toward an environmental predictor of tuna recruitment. Fisheries Oceanography 29 (5): 436–441. https://doi.org/10.1111/fog.12487.

    Article  Google Scholar 

  • Yeh, Heidi D., Jennifer M. Questel, Kendra R. Maas, and Ann Bucklin. 2020. Metabarcoding analysis of regional variation in gut contents of the copepod Calanus finmarchicus in the North Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 51: 104738. https://doi.org/10.1016/j.dsr2.2020.104738.

    Article  Google Scholar 

  • Yi, Xiaoyan, Yousong Huang, Yunyun Zhuang, Hongju Chen, Feifei Yang, Weimin Wang, Donghui Xu, Guangxing Liu, and Huan Zhang. 2017. In situ diet of the copepod Calanus sinicus in coastal waters of the South Yellow Sea and the Bohai Sea. Acta Oceanologica Sinica 36 (6): 68–79. https://doi.org/10.1007/s13131-017-0974-6.

    Article  CAS  Google Scholar 

  • Zhang, Huan, Debashish Bhattacharya, and Senjie Lin. 2005. Phylogeny of dinoflagellates based on mitochondrial cytochrome B and nuclear small subunit rDNA sequence comparisons 1: Phylogeny of dinoflagellates. Journal of Phycology 41 (2): 411–420. https://doi.org/10.1111/j.1529-8817.2005.04168.x.

    Article  CAS  Google Scholar 

  • Ziemann, D.A., L.D. Conquest, M. Olaizola, and P.K. Bienfang. 1991. Interannual variability in the spring phytoplankton bloom in Auke Bay, Alaska. Marine Biology 109 (2): 321–334.

    Article  Google Scholar 

Download references

Acknowledgments

BSA Inc. analyzed the phytoplankton samples for counts and biovolume by taxon. Funding was provided by Contract 2284 from the Delta Stewardship Council and Contract 17-11 from the State and Federal Contractors Water Association, both to San Francisco State University. Thanks to the Carpenter Lab at the Estuary & Ocean Science Center for help with tissue digestion and diatom slide protocols, and A. Slaughter for helpful discussion that improved data interpretation. Thank you also to two helpful reviewers for constructive feedback that improved this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Jungbluth.

Additional information

Communicated by David G. Kimmel

Electronic supplementary material

ESM 1

(DOCX 1.81 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jungbluth, M., Lee, C., Patel, C. et al. Production of the Copepod Pseudodiaptomus forbesi Is Not Enhanced by Ingestion of the Diatom Aulacoseira granulata During a Bloom. Estuaries and Coasts 44, 1083–1099 (2021). https://doi.org/10.1007/s12237-020-00843-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00843-9

Keywords

Navigation