Skip to main content

Advertisement

Log in

Spatial modeling of land-use change in a rapidly urbanizing landscape in central Iran: integration of remote sensing, CA-Markov, and landscape metrics

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present paper, land use/land cover (LULC) change was predicted in the Greater Isfahan area (GIA), central Iran. The GIA has been growing rapidly in recent years, and attempts to simulate its spatial expansion would be essential to make appropriate decisions in LULC management plans and achieve sustainable development. Several modeling tools were employed to outline sustainable scenarios for future dynamics of LULCs in the region. Specifically, we explored past LULC changes in the study area from 1996 to 2018 and predicted its future changes for 2030 and 2050. For this purpose, we performed object-oriented and decision tree techniques on Landsat and Sentinel-2 satellite images. The CA-Markov hybrid model was utilized to analyze past trends and predict future LULC changes. LULC changes were quantitatively measured using landscape metrics. According to the results, the majority of changes were related to increasing residential areas and decreasing irrigated lands. The results indicated that residential lands would grow from 27,886.87 ha to 67,093.62 ha over1996–2050 while irrigated lands decrease from 99,799.4 ha to 50,082.16 ha during the same period of time. The confusion matrix of the 2018 LULC map was built using a total of 525 ground truth points and yielded a Kappa coefficient and overall accuracy of 78% and 82%, respectively. Moreover, the confusion matrix constructed base on the Sentinel-2 map, as a reference, to judge the predicted 2018 LULC map with a Kappa coefficient of 88%. The results of this study provide useful insights for sustainable land management. The results of this research also proved the promising capability of remote sensing algorithms, CA-Markov model and landscape metrics future LULC planning in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguirre-Gutiérrez, J., Seijmonsbergen, A. C., & Duivenvoorden, J. F. (2012). Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico. Applied Geography, 34, 29–37.

  • Aquilué, N., De Cáceres, M., Fortin, M. J., Fall, A., & Brotons, L. (2017). A spatial allocation procedure to model land-use/land-cover changes: accounting for occurrence and spread processes. Ecological Modelling, 344, 73–86.

    Google Scholar 

  • Arsanjani, J., Helbich, M., Kainz, W., & Darvishi Boloorani, A. (2012). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Google Scholar 

  • Asgarian, A., Soffianian, A., Pourmanafi, S., & Bagheri, M. (2018). Evaluating the spatial effectiveness of alternative urban growth scenarios inprotecting cropland resources: a case of mixed agricultural-urbanized landscape in central Iran. Sustainable Cities and Society, 43, 197–207.

    Google Scholar 

  • Barros, K., Ribeiro, C., Marcatti, G., Lorenzon, A., de Castro, N., Domingues, G., de Carvalho, J., & Santos, A. (2018). Markov chains and cellular automata to predict environments subject to desertification. Journal of Environmental Management, 225, 160–167.

    Google Scholar 

  • Boongaling, C. G. K., Faustino-Eslava, D. V., & Lansigan, F. P. (2018). Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: the case of an ungauged catchment in the Philippines. Land Use Policy, 72, 116–128.

    Google Scholar 

  • Bryan, B. A., Nolan, M., McKellar, L., Connor, D. J., Newth, D., Harwood, T., King, D., Navarro, J., Cai, Y., Gao, L., Grundy, M., Graham, P., Ernst, A., Dunstall, S., Stock, F., Brinsmead, T., Harman, I., Grigg, J. N., Battaglia, M., Keating, B., Wonhas, A., & Hatfield-Dodds, S. (2016). Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Global Environmental Change, 38, 130–152.

    Google Scholar 

  • Chen, Y., Li, X., Liu, X., & Ai, B. (2014). Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 28, 234–255.

    Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Google Scholar 

  • Conradie, B., Piesse, J., & Stephens, J. (2019). The changing environment: efficiency, vulnerability and changes in land use in the South African Karoo, 2012-2014. Environment and Development, 32, 100453.

    Google Scholar 

  • Degife, A. W., Zabel, F., & Mauser, W. (2018). Assessing land use and land cover changes and agricultural farmland expansions in Gambella Region, Ethiopia, using Landsat 5 and Sentinel 2a multispectral data. Heliyon, 4, e00919.

    Google Scholar 

  • Feng, Y., & Tong, X. (2018). Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules. GIScience & Remote Sensing, 55, 678–698.

  • Freitas, M. W. D., Muñoz, P., & dos Santos, J. R. (2018). Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil). Ecological Modelling, 384, 128–144.

    Google Scholar 

  • Ghavami, M., & Taleai, M. (2017). Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process. Journal of Geographical Systems, 19, 109–132.

    Google Scholar 

  • Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S. K., Ghosh, S., Mitra, D., Ghosh, T., & Hazra, S. (2017). Application of cellular automata and Markov-chain model in geospatial environmental modeling-a review. Remote Sensing Applications: Society and Environment, 5, 64–77.

    Google Scholar 

  • Gomes, L. C., Bianchi, F. J. J. A., Cardoso, I. M., Schulte, R. P. O., Arts, B. J. M., & Fernandes Filho, E. I. (2020). Land use and land cover scenarios: an interdisciplinary approach integrating local conditions and the global shared socioeconomic pathways. Land Use Policy, 97, 104723.

    Google Scholar 

  • Gounaridis, D., Chorianopoulos, I., Symeonakis, E., & Koukoulas, S. (2019). A random forest-cellular automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Science of the Total Environment, 646, 320–335.

    CAS  Google Scholar 

  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222, 3761–3772.

    Google Scholar 

  • Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10, 1–23.

    CAS  Google Scholar 

  • Hasan, S. S., Sarmin, N. S., & Miah, M. G. (2020). Assessment of scenario-based land use changes in the Chittagong Hill Tracts of Bangladesh. Environment and Development, 34, 100463.

    Google Scholar 

  • Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K., & Masui, T. (2017). Global land use allocation model linked to an integrated assessment model. Science of the Total Environment, 580, 787–796.

    CAS  Google Scholar 

  • Hipt, F., Diekkrüger, B., Steup, G., Yira, Y., Hoffmann, T., Rode, M., & Näschen, K. (2019). Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catch-ment (Dano, Burkina Faso) using SHETRAN. Science of the Total Environment, 653, 431–445.

    Google Scholar 

  • Hou, H., Wang, R., & Murayama, Y. (2019). Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: a case study of Hangzhou from1990 to 2035. Science of the Total Environment, 661, 422–431.

    CAS  Google Scholar 

  • Inkoom, J. N., Frank, S., Greved, K., Walze, U., & Fürstf, C. (2018). Suitability of different landscape metrics for the assessments of patchy landscapes in West Africa. Ecological Indicators, 85, 117–127.

    Google Scholar 

  • Isfahan Regional Water Company. (2008). Determination of water resources and consumption in Zayandehrood River Basin, report to Ministry of Energy, Islamic Republic of Iran, Isfahan (In Persian).

  • Islam, K., Rahman, M. F., & Jashimuddin, M. (2018). Modeling land use change using cellular automata and artificial neural network: the case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88, 439–453.

    Google Scholar 

  • Jaafari, S., Sakieh, Y., Alizadeh Shabani, A., Danehkar, A., & Nazarisamani, A. (2016). Landscape change assessment of reservation areas using remote sensing and landscape metrics (case study: Jajroud reservation, Iran). Springer: Environment, Development and Sustainability.

    Google Scholar 

  • Jahanishakib, F., Mirkarimi, H., Salmanmahiny, A., & Poodat, F. (2018). Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting. Environmental Monitoring and Assessment, 190, 332.

    Google Scholar 

  • Jensen, J. (2015). Introductory digital image processing, a remote sensing perspective: Chapter 13, remote sensing-derived thematic map accuracy assessment. Pearson, 4th edition, 658 p.

  • Jiang, W., Deng, Y., Tang, Z., Lei, X., & Chen, Z. (2017). Modelling the potential impacts of urban ecosystem changes oncarbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecological Modelling, 345, 30–40.

    Google Scholar 

  • Joorabian Shooshtari, S., & Gholamalifard, M. (2015). Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sensing Applications: Society and Environment, 1, 1–19.

    Google Scholar 

  • Joorabian Shooshtari, S., Shayesteh, K., Gholamalifard, M., Azari, M., & Lopez-Moreno, J. I. (2018). Land cover change modelling in Hyrcanian forests, northern Iran: a landscape pattern and transformation analysis perspective. Cuadernos de Investigacion Geografica, 1, 1–19.

    Google Scholar 

  • Kalantari, Z., Ferreira, C., Page, J., Goldenberg, R., Olsson, J., & Destouni, G. (2019). Meeting sustainable development challenges in growing cities: coupled social-ecological systems modeling of land use and water changes. Journal of Environmental Management, 245, 471–480.

    Google Scholar 

  • Kindu, M., Schneider, T., Döllerer, M., Teketay, D., & Knoke, T. (2018). Scenario modelling of land use/land cover changes in Munessa-Shashemene landscape of the Ethiopian highlands. Science of the Total Environment, 622, 534–546.

    Google Scholar 

  • Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R.-U., Tischendorf, L., & Walz, U. (2015). Understanding and quantifying landscape structure-Areviewon relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295, 31–41.

    Google Scholar 

  • Liao, J., Tang, L., Shao, G., Su, X., Chen, D., & Xu, T. (2016). Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling & Software, 75, 163–175.

    Google Scholar 

  • Liao, J., Shao, G., Wang, C., Tang, L., Huang, Q., & Qiu, Q. (2019). Urban sprawl scenario simulations based on cellular automata and ordered weighted averaging ecological constraints. Ecological Indicators, 107, 105572.

    Google Scholar 

  • Lin, B. B., Egerer, M. H., Liere, H., Jha, S., Bichier, P., & Philpott, S. M. (2018). Local- and landscape-scale land cover affects microclimate and water use in urban gardens. Science of the Total Environment, 610, 570–575.

    Google Scholar 

  • Liu, D., Zheng, X., Zhang, C., & Wang, H. (2017). A new temporal–spatial dynamics method of simulating land-use change. Ecological Modelling, 350, 1–10.

    Google Scholar 

  • Liu, D., Toman, E., Fuller, Z., Chen, G., Londo, A., Zhang, X., & Zhao, K. (2018). Integration of historical map and aerial imagery to characterize long-term land-use change and landscape dynamics: an object-based analysis via random forests. Ecological Indicators, 95, 595–605.

    Google Scholar 

  • Liu, D., Zheng, X., & Wang, H. (2020). Land-use simulation and decision-support system (LandSDS): seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecological Modelling, 417, 108924.

    Google Scholar 

  • Luo, C., Li, Z., Liu, H., Li, H., Wan, R., Pan, J., & Chen, X. (2020). Differences in the responses of flow and nutrient load to isolated and coupled future climate and land use changes. Journal of Environmental Management, 256, 109918.

    CAS  Google Scholar 

  • Madani, K., & Mariño, M. A. (2009). System dynamics analysis for managing Iran’s Zayandeh-Rud River Basin. Water Resources Management, 23, 2163–2187.

    Google Scholar 

  • Malczewski, J. (2000). On the use of weighted linear combination method in GIS: common and best practice approaches. Transactions in GIS, 4, 5–22.

    Google Scholar 

  • Mancosu, E., Gago-Silva, A., Barbosa, A., de Bono, A., Ivanov, E., Lehmann, A., & Fons, J. (2014). Future land-use change scenarios for the Black Sea catchment. Environmental Science & Policy, 46, 26–36.

    Google Scholar 

  • Mas, J.-F., Kolb, M., Paegelow, M., Olmedo, M., & Houet, T. (2014). Inductive pattern-based land use/cover change models: a comparison of four software packages. Environmental Modelling & Software, 51, 94–111.

    Google Scholar 

  • McGarigal, K. (2002). FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps (accessed 10.02.08) http://www.umass.edu/landeco/research/fragstats/fragstats.html.

  • Moein, M., Asgarian, A., Sakieh, Y., & Soffianian, A. (2018). Scenario-based analysis of land-use competition in central Iran: finding the trade-off between urban growth patterns and agricultural productivity. Sustainable Cities and Society, 39, 557–567.

    Google Scholar 

  • Mohamed, A., & Worku, H. (2020). Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate, 31, 100545.

    Google Scholar 

  • Mousazadeh, R., Ghaffarzadeh, H., Nouri, J., Gharagozlou, A., & Farahpour, M. (2015). Land use change detection and impact assessment in Anzali international coastal wetland using multi-temporal satellite images. Environmental Monitoring and Assessment, 187, 776.

    Google Scholar 

  • Munthali, M. G., Mustak, S., Adeola, A., Botai, J., Singh, S. K., & Davis, N. (2020). Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid cellular automata and Markov model. Remote Sensing Applications: Society and Environment, 17, 100276.

    Google Scholar 

  • Murray, A. (2010). Advances in location modeling: GIS linkages and contributions. Journal of Geographical Systems, 12, 335–354.

    Google Scholar 

  • Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2012). Per-pixel vs. object-based classification of urban land covers extraction using high spatial resolution imagery. Remote Sensing of Environment, 115, 1145–1161.

    Google Scholar 

  • Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12S, S27–S31.

    Google Scholar 

  • Petropoulos, P., Kalaitzidis, G. C., & Vadrevu, K. (2012). Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers & Geosciences, 41, 99–107.

    Google Scholar 

  • Pham, H., Yamaguchi, Y., & Bui, T. (2011). A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landscape and Urban Planning, 100, 223–230.

    Google Scholar 

  • Piling, S., Yueqing, X., Zhonglei, Y., Qingguo, L., Baopeng, X., & Jia, L. (2016). Scenario simulation and landscape pattern dynamic changes of land use in the Poverty Belt around Beijing and Tianjin: a case study of Zhangjiakou city, Hebei Province. Journal of Geographical Sciences, 26, 272–296.

    Google Scholar 

  • Program and Budget of Isfahan. (2018). Management and planning organization of Isfahan province organization. Iran: Development Documents of Esfahan Province.

    Google Scholar 

  • Qiu, R., Xu, W., Zhang, J., & Staenz, K. (2018). Modeling and simulating industrial land-use evolution in Shanghai, China. Journal of Geographical Systems, 20, 57–83.

    Google Scholar 

  • Rana, V., & Suryanarayana, T. (2020). Performance evaluation of parametric and non-parametric classification algorithms for watershed scale land use/land cover mapping using principal component analysis of sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351.

  • Ren, Y., Lu, Y., Comber, A., Fu, B., Harris, P., & Wu, L. (2019). Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Science Reviews, 190, 398–415.

  • Roose, M., & Hietala, A. (2018). Methodological Markov-CA projection of the greening agricultural landscape—a case study from 2005 to 2017 in southwestern Finland. Environmental Monitoring and Assessment, 190, 411.

    Google Scholar 

  • Ruben, G., Zhang, K., Dong, Z., & Xia, J. (2020). Analysis and projection of land-use/land-cover dynamics through scenario-based simulations using the CA-Markov model: a case study in Guanting Reservoir Basin, China. Sustainability, 12, 3747.

    Google Scholar 

  • Rwanga, S., & Ndambuki, J. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8, 611–622.

    Google Scholar 

  • Sakieh, Y., & Salmanmahiny, A. (2016). Performance assessment of geospatial simulation models of land-use change-a landscape metric-based approach. Environmental Monitoring and Assessment, 188, 169.

    Google Scholar 

  • Sánchez-Espinosa, A., & Schröder, C. (2019). Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. Journal of Environmental Management, 247, 484–498.

    Google Scholar 

  • Shifaw, E., Sha, J., Li, X., Bao, Z., & Zhou, Z. (2019). An insight into land-cover changes and their impacts on ecosystem services before and after the implementation of a comprehensive experimental zone plan in Pingtan island, China. Land Use Policy, 82, 631–642.

    Google Scholar 

  • Sohoulande Djebou, D. C. (2018). Toward an integrated watershed zoning framework based on the spatio-temporal variability of land-cover and climate: application in the Volta river basin. Environment and Development, 28, 55–66.

    Google Scholar 

  • Sola, I., García-Martín, A., Sandonís-Pozo, L., Álvarez-Mozos, J., Pérez-Cabello, F., González-Audícana, M., & Montorio Llovería, R. (2018). Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. International Journal of Applied Earth Observation and Geoinformation, 73, 63–76.

    Google Scholar 

  • Tarawally, M., Wenbo, X., Weiming, H., Darlington Mushore, T., & Biniyam Kursah, M. (2019). Land use/land cover change evaluation using land change modeller: a comparative analysis between two main cities in Sierra Leone. Remote Sensing Applications: Society and Environment, 16, 100–262.

    Google Scholar 

  • Tian, X., Wenbin, W., Qingbo, Z., Wenxia, T., Verburg, P., Peng, Y., & Liming, Y. (2018). Modeling the spatio-temporal changes in land uses and its impacts on ecosystem services in Northeast China over 2000–2050. Journal of Geographical Sciences, 28, 1611–1625.

    Google Scholar 

  • Turner, M.G., & Gardner, R.H. (2015). Landscape ecology in theory and practice: Pattern and Process (2th ed). Springer, 482 p.

  • Ullah, S., Ahmad, K., Sajjad, R., Abbasi, A., Nazeer, A., & Tahir, A. (2019). Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. Journal of Environmental Management, 245, 348–357.

    Google Scholar 

  • Wang, S. Q., Zheng, X. Q., & Zang, X. B. (2012). Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13, 1238–1245.

    Google Scholar 

  • Wang, Q., Blackburn, G. A., Onojeghuo, A. O., Dash, J., Zhou, L., Zhang, Y., & Atkinson, P. M. (2017). Fusion of Landsat 8 OLI and Sentinel-2 MSI data. Geoscience and Remote Sensing, 55, 3885–3899.

    Google Scholar 

  • Wang, C., Wang, Y., Wang, R., & Zheng, P. (2018). Modeling and evaluating land-use/land-cover change for urban planning and sustainability: a case study of Dongying city, China. Journal of Cleaner Production, 172, 1529–1534.

    Google Scholar 

  • Wang, D., Ma, R., Xue, K., & Loiselle, S. (2019). The assessment of Landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sensing, 11, 1–23.

    Google Scholar 

  • Wu, J., Jenerette, G. D., Buyantuyev, A., & Redman, C. L. (2011). Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecological Complexity, 8, 1–8.

    Google Scholar 

  • Wu, D., Cui, Y., & Luo, Y. (2019). Irrigation efficiency and water-saving potential considering reuse of return flow. Agricultural Water Management, 221, 519–527.

    Google Scholar 

  • Xing, H., & Meng, Y. (2018). Integrating landscape metrics and socioeconomic features for urban functional region classification. Computers, Environment and Urban Systems, 72, 134–145.

    Google Scholar 

  • Zhang, Q., Ban, Y., Liu, J., & Hu, Y. (2011). Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Computers, Environment and Urban Systems, 35, 126–139.

    Google Scholar 

  • Zhang, H., Zeng, Y., Jin, X., Shu, B., Zhou, Y., & Yang, X. (2016). Simulating multi-objective land use optimization allocation using Multi-agent system—a case study in Changsha, China. Ecological Modelling, 320, 334–347.

    Google Scholar 

  • Zhu, Z., Liu, L., Chen, Z., Zhang, J., & Verburg, P. (2010). Land-use change simulation and assessment of driving factors in the loess hilly region—a case study as Pengyang County. Environmental Monitoring and Assessment, 164, 133–142.

    Google Scholar 

  • Zhuo, L., Weiguo, J., Wenjie, W., Xuan, L., & Yue, D. (2019). Exploring spatial-temporal change and gravity center movement of construction land in the Chang-Zhu-Tan urban agglomeration. Journal of Geographical Sciences, 29, 1363–1380.

    Google Scholar 

  • Zou, L., Liu, Y., Wang, J., Yang, Y., & Wang, Y. (2019). Land use conflict identification and sustainable development scenario simulation on China’s southeast coast. Journal of Cleaner Production, 238, 117899.

    Google Scholar 

Download references

Funding

This study received financial support of Iran National Sciences Foundation (INSF) of vice-presidency for Sciences and Technology (grant number: 98012996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Lotfi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motlagh, Z.K., Lotfi, A., Pourmanafi, S. et al. Spatial modeling of land-use change in a rapidly urbanizing landscape in central Iran: integration of remote sensing, CA-Markov, and landscape metrics. Environ Monit Assess 192, 695 (2020). https://doi.org/10.1007/s10661-020-08647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08647-x

Keywords

Navigation