Skip to main content

Advertisement

Log in

Technical and environmental efficiency of agriculture sector in South Asia: a stochastic frontier analysis approach

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The purpose of this study was to measure and assess comparative study of technical and environmental efficiency of agriculture sector in South Asia using balanced panel data for the period 2002–2016. The translog stochastic frontier analysis approach was applied to estimate output-oriented technical efficiency and input-oriented environmental efficiency. Results of translog production model give that output elasticity w.r.t. land, labor, capital and fertilizer is 2.13, 1.26, 0.01 and 0.17, respectively. Log likelihood test shows that there is technical inefficiency in the agriculture sector of South Asian countries. The average value of output-oriented technical efficiency for South Asian countries was 0.92 ranging from 0.82 to 0.97. This suggests that agricultural production of South Asian region could be increased up to 8 percent by eliminating the effects of technical inefficiency. Moreover, the findings show that Sri Lanka is the most technically efficient country having efficiency 0.99 followed by India (0.98), Bhutan (0.93), Bangladesh (0.89), Nepal (0.88) and Pakistan (0.85). The results of input-oriented environmental efficiency score of South Asia were 0.77 ranging from 0.57 to 0.97. This shows that there is opportunity to enhance environmental efficiency of South Asian countries by 23%. Sri Lanka achieved the highest environmental efficiency (0.97) followed by India (0.96), Bhutan (0.72), Bangladesh (0.71), Pakistan (0.67) and Nepal (0.57). It is recommended that there must be collaboration among the South Asian countries in research and development especially in agriculture sector on priority bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abas, N., Kalair, A., Khan, N., & Kalair, A. R. (2017). Review of GHG emissions in Pakistan compared to SAARC countries. Renewable and Sustainable Energy Reviews, 80, 990–1016.

    Google Scholar 

  • Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–37.

    Google Scholar 

  • Ajibefun, A. I., & Adenegan, K. O. (2008). Impact of policy changes on technical efficiency on farmers: empirical evidence from Nigerian small-scale food crop farmers. Journal of Rural Economics and Development, 17(1), 13–23.

    Google Scholar 

  • Battese, G. E., & Broca, S. S. (1997). Functional forms of stochastic frontier production functions and models for technical inefficiency effects: a comparative study for wheat farmers in Pakistan. Journal of Productivity Analysis, 8(4), 395–414.

    Google Scholar 

  • Battese, G. E., & Coelli, T. J. (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics, 38(3), 387–399.

    Google Scholar 

  • Battese, G. E., & Coelli, T. J. (1992). Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. Journal of Productivity Analysis, 3(1–2), 153–169.

    Google Scholar 

  • Carrer, M. J., de Souza Filho, H. M., Batalha, M. O., & Rossi, F. R. (2015). Farm management information systems (FMIS) and technical efficiency: An analysis of citrus farms in Brazil. Computers and Electronics in Agriculture, 119, 105–111.

    Google Scholar 

  • Coelli, T. J., Rao, D. S. P., & Battese G.E., (1998). An introduction to efficiency and productivity analysis (pp. 183–218). Massachusetts: Kluwer Academic Publishers.

    Google Scholar 

  • Coelli, T. (1995a). Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis. Journal of Productivity Analysis, 6(3), 247–268.

    Google Scholar 

  • Coelli, T. J. (1995b). Recent developments in frontier modelling and efficiency measurement. Australian Journal of Agricultural Economics, 39(3), 219–245.

    Google Scholar 

  • Coelli, T. J. (1996). A guide to FRONTIER version 4.1: a computer program for stochastic frontier production and cost function estimation (Vol. 7, pp. 1–33). CEPA Working papers.

  • Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. Berlin: Springer.

    Google Scholar 

  • Cropper, M. L., & Oates, W. E. (1992). Environmental economics: A survey. Journal of Economic Literature, 30(2), 675–740.

    Google Scholar 

  • Davidova, S., & Latruffe, L. (2020). Technical efficiency and farm financial management in countries in transition. INRA-ESR Remes, 3(10), 1–38.

    Google Scholar 

  • De Koeijer, T. J., Wossink, G. A. A., Struik, P. C., & Renkema, J. A. (2002). Measuring agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers. Journal of Environmental Management, 66(1), 9–17.

    Google Scholar 

  • FAO (2016). The United Nations Framework Convention on Climate Change (UNFCCC) on Issues relating to agriculture: agricultural practices and technologies (No. CCC/SBSTA/2014/L.14). Rome. https://unfccc.int/files/documentation/submissions.

  • FAO (2018). Country Indicators. http://www.fao.org/faostat/en/#data.

  • Färe, R., & Lovell, C. A. K. (1978). Measuring the Technical Efficiency of Production. Journal of Economic Theory, 19(1), 150–162.

    Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253–281.

    Google Scholar 

  • Farrell, M. J., & Fieldhouse, M. (1962). Estimating efficient production functions under increasing returns to scale. Journal of the Royal Statistical Society: Series A (General), 125(2), 252–267.

    Google Scholar 

  • Färe, R., Grosskopf, S., & Kokkelenberg, E. C. (1989). Measuring plant capacity, utilization and technical change: A nonparametric approach. International Economic Review, 30(3), 655–666.

    Google Scholar 

  • Ferrara, G., & Vidoli, F. (2017). Semiparametric stochastic frontier models: A generalized additive model approach. European Journal of Operational Research, 258(2), 761–777.

    Google Scholar 

  • Gatimbu, K. K., Ogada, M. J., & Budambula, N. L. (2020). Environmental efficiency of small-scale tea processors in Kenya: an inverse data envelopment analysis (DEA) approach. Environment, Development and Sustainability, 22(4), 3333–3345.

    Google Scholar 

  • Graham, M. (2004). Environmental efficiency: meaning and measurement and application to Australian dairy farms (No. 415–2016–26217).

  • Hjalmarsson, L., Kumbhakar, S. C., & Heshmati, A. (1996). DEA, DFA and SFA: a comparison. Journal of Productivity Analysis, 7(2–3), 303–327.

    Google Scholar 

  • ILO (2018). Data Tools and Labor Statistics ILOSTAT, https://ilostat.ilo.org/data/.

  • Johnson, S. R., Bouzaher, A., Carriquiry, A., Jensen, H., & Lakshminarayan, P. G. (1994). Production efficiency and agricultural reform in Ukraine. American Journal of Agricultural Economics, 76(3), 629–635.

    Google Scholar 

  • Kopp, R. J. (1981). The measurement of productive efficiency: A reconsideration. The Quarterly Journal of Economics, 96(3), 477–503.

    Google Scholar 

  • Kuo, H. F., Chen, H. L., & Tsou, K. W. (2014). Analysis of farming environmental efficiency using a DEA model with undesirable outputs. Apcbee Procedia, 10, 154–158.

    Google Scholar 

  • Le, T. L., Lee, P. P., Peng, K. C., & Chung, R. H. (2019). Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries. Agric. Econ., 65, 249–258.

    Google Scholar 

  • Liu, J., Rahman, S., Sriboonchitta, S., & Wiboonpongse, A. (2017). Enhancing productivity and resource conservation by eliminating inefficiency of Thai rice farmers: a zero-inefficiency stochastic frontier approach. Sustainability, 9(5), 1–18.

    Google Scholar 

  • Liu, Y., Yan, B., Wang, Y., & Zhou, Y. (2019). Will land transfer always increase technical efficiency in China?—A land cost perspective. Land Use Policy, 82, 414–421.

    Google Scholar 

  • Long, X., Luo, Y., Sun, H., & Tian, G. (2018). Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014. Natural Hazards, 92, 1573–1591. https://doi.org/10.1007/s11069-018-3265-4.

    Article  Google Scholar 

  • Mathijs, E., & Swinnen, J. F. (2001). Production organization and efficiency during transition: An empirical analysis of East German agriculture. Review of Economics and Statistics, 83(1), 100–107.

    Google Scholar 

  • Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 18(2), 435–444.

    Google Scholar 

  • Moreno-Moreno, J. J., Morente, F. V., & Diaz, M. T. S. (2018). Assessment of the operational and environmental efficiency of agriculture in Latin America and the Caribbean. Agricultural Economics, 64(2), 74–88.

    Google Scholar 

  • Ouyang, W., & Yang, J. B. (2020). The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model. Energy, 197(C), 117161.

  • Pais-Magalhães, V., Moutinho, V., & Marques, A. C. (2020). Scoring method of eco-efficiency using the DEA approach: evidence from European waste sectors. Environment, Development and Sustainability,. https://doi.org/10.1007/s10668-020-00709-x.

    Article  Google Scholar 

  • Pitt, M. M., & Lee, L. F. (1981). The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics, 9(1), 43–64.

    Google Scholar 

  • Pittman, R. W. (1981). Issue in pollution control: interplant cost differences and economies of scale. Land Economics, 57(1), 1–17.

    Google Scholar 

  • Pittman, R. W. (1983). Multilateral productivity comparisons with undesirable outputs. The Economic Journal, 93(372), 883–891.

    Google Scholar 

  • Reinhard, S., Lovell, C. K., & Thijssen, G. (1999). Econometric estimation of technical and environmental efficiency: An application to Dutch dairy farms. American Journal of Agricultural Economics, 81(1), 44–60.

    Google Scholar 

  • Reinhard, S., Lovell, C. K., & Thijssen, G. J. (2000). Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. European Journal of Operational Research, 121(2), 287–303.

    Google Scholar 

  • Sriboonchitta, S., Liu, J., Wiboonpongse, A., & Denoeux, T. A. (2017). Double-copula stochastic frontier model with dependent error components and correction for sample selection. International Journal Approximate Reasoning, 80, 174–184.

    Google Scholar 

  • Tirado, R., Englande, A.J., Promakasikorn, L., & Novotny, V. (2017). Use of agrochemicals in Thailand and its consequences for the environment. Greenpeace Research Laboratories Technical Note. 2008. Available on line: https://www.greenpeace.to/publications/GPSEA_agrochemical-use-in-thailand.pdf.

  • Trang, N., Khai, H., Tu, H., & Hong, N. (2018). Environmental efficiency of transformed farming systems: A case study of change from sugarcane to shrimp in the Vietnamese Mekong Delta. Forestry Research and Engineering: International Journal, 2, 54–60.

    Google Scholar 

  • Tsionas, E. G. (2003). Combining DEA and stochastic frontier models: An empirical Bayes approach. European Journal of Operational Research, 147(3), 499–510.

    Google Scholar 

  • Tu, V. H. (2017). Resource use efficiency and economic losses: implications for sustainable rice production in Vietnam. Environment, development and sustainability, 19(1), 285–300.

    Google Scholar 

  • Tu, V. H., Can, N. D., Takahashi, Y., Kopp, S. W., & Yabe, M. (2018). Modelling the factors affecting the adoption of eco-friendly rice production in the Vietnamese Mekong Delta. Cogent Food & Agriculture, 4(1), 1–24.

    Google Scholar 

  • Tu, V. H., Can, N. D., Takahashi, Y., Kopp, S. W., & Yabe, M. (2019). Technical and environmental efficiency of eco-friendly rice production in the upstream region of the Vietnamese Mekong delta. Environment, Development and Sustainability, 21(5), 2401–2424.

    Google Scholar 

  • Ullah, A., Khan, D., & Zheng, S. (2017). The determinants of technical efficiency of peach growers: evidence from Khyber Pakhtunkhwa Pakistan. Custos e Agronegocio On Line, 13(4), 211–238.

    Google Scholar 

  • Ullah, A., & Khan, D. (2020). Testing environmental Kuznets curve hypothesis in the presence of green revolution: a cointegration analysis for Pakistan. Environmental Science and Pollution Research, 27(10), 11320–11336.

    CAS  Google Scholar 

  • Vo, H. T., Yabe, M., Trang, N. T., & Khai, H. V. (2015). Environmental efficiency of ecologically engineered rice production in the Mekong Delta of Vietnam. Journal of the Faculty of Agriculture Kyushu University, 60(2), 493–500.

    Google Scholar 

  • Vu, T. H., Peng, K. C., & Chung, R. H. (2019). Evaluation of Environmental Efficiency of Edible Canna Production in Vietnam. Agriculture, 9(11), 1–14.

    Google Scholar 

  • Wang, K., Yu, S., & Zhang, W. (2013). China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Mathematical and Computer Modelling, 58(5–6), 1117–1127.

    CAS  Google Scholar 

  • World Bank (2019). Data Bank. Retrieved from https://databank.worldbank.org/.

  • Yang, L., Ma, C., Yang, Y., Zhang, E., & Lv, H. (2020). Estimating the regional eco-efficiency in China based on bootstrapping by-production technologies. Journal of Cleaner Production, 243, 118550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilawar Khan.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, Z., Khan, D. & Haq, I.u. Technical and environmental efficiency of agriculture sector in South Asia: a stochastic frontier analysis approach. Environ Dev Sustain 23, 9260–9279 (2021). https://doi.org/10.1007/s10668-020-01023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01023-2

Keywords

Navigation