Skip to main content
Log in

Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this work we investigate the buckling response of sandwich plates with a polymeric core and two face sheets reinforced by carbon nanotubes (CNTs). The problem is tackled analytically by means of a higher-order sandwich plate theory, where the face sheets are modeled according to a classical plate theory and modified strain gradient theory with temperature-dependent and moisture-dependent material properties. A Mori–Tanaka method is applied to determine the mechanical properties associated with the face sheets, while considering the agglomeration effect of CNTs. The governing equations of the problem are derived from the Hamilton’s principle, whose solutions are recovered by means of a Navier–Stokes method. A thorough sensitivity study of the structural response to different parameters includes the agglomeration and volume fraction of CNTs, the material length scale parameter, the side and aspect ratios, together with the temperature variation and humidity conditions. The sandwich plates are assumed to be immersed within an orthotropic Pasternak foundation, whose normal and shear moduli can affect the overall buckling response of the structure. Numerical experiments show that sandwich plates with nanocomposite face sheets, resting on orthotropic elastic foundations, feature an increased stiffness, where the proposed formulation yields accurate results, due to the possibility of considering the variation in temperature, humidity and agglomeration of the reinforcing CNTs within the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ram, K.S., Sinha, P.K.: Hygrothermal effects on the buckling of laminated composite plates. Compos. Struct. 21(4), 233–247 (1992)

    Article  ADS  Google Scholar 

  2. Pradeep, V., Ganesan, N.: Thermal buckling and vibration behavior of multi-layer rectangular viscoelastic sandwich plates. J. Sound Vib. 310(1–2), 169–183 (2008)

    Article  ADS  Google Scholar 

  3. Shariyat, M.: Non-linear dynamic thermo-mechanical buckling analysis of the imperfect sandwich plates based on a generalized three-dimensional high-order global-local plate theory. Compos. Struct. 92(1), 72–85 (2010)

    Article  ADS  Google Scholar 

  4. Frostig, Y., Thomsen, O.T.: Non-linear thermal response of sandwich panels with a flexible core and temperature dependent mechanical properties. Compos. B 39(1), 165–184 (2008)

    Article  Google Scholar 

  5. Kundu, C.K., Han, J.H.: Nonlinear buckling analysis of hygrothermoelastic composite shell panels using finite element method. Compos. B 40(4), 313–328 (2009)

    Article  Google Scholar 

  6. Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T., Lieu-Xuan, Q.: A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Comput. Mater. Sci. 96, 549–558 (2015)

    Article  Google Scholar 

  7. Zhang, J., Chen, S., Zheng, W.: Dynamic buckling analysis of functionally graded material cylindrical shells under thermal shock. Continuum Mech. Thermodyn. 32, 1095–1108 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  8. Malekzadeh, P.: Three-dimensional thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates using differential quadrature method. Compos. Struct. 93(4), 1246–1254 (2011)

    Article  Google Scholar 

  9. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. B 43(2), 411–421 (2012)

    Article  Google Scholar 

  10. Natarajan, S., Haboussi, M., Manickam, G.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets. Compos. Struct. 113, 197–207 (2014)

    Article  Google Scholar 

  11. Lei, Z.X., Zhang, L.W., Liew, K.M.: Buckling analysis of CNT reinforced functionally graded laminated composite plates. Compos. Struct. 152, 62–73 (2016)

    Article  Google Scholar 

  12. Thang, P.T., Nguyen, T.T., Lee, J.: A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates. Compos. B 127, 166–174 (2017)

    Article  Google Scholar 

  13. Kamarian, S., Bodaghi, M., Song, J.I.: Hygrothermal effects on the buckling of soft-core sandwich plates with composite layered face sheets. Polym. Compos. (2020). https://doi.org/10.1002/pc.25700

    Article  Google Scholar 

  14. Lamba, N.K., Deshmukh, K.C.: Hygrothermoelastic response of a finite solid circular cylinder. Multid. Model. Mater. Struct. 16(1), 37–52 (2020)

    Article  Google Scholar 

  15. Tariq, M.H., Younas, U., Dang, H., Ren, J.: A general solution for three dimensional steady-state transversely isotropic hygro-thermo-magneto-piezoelectric media. Appl. Math. Modell. 80, 625–646 (2020)

    Article  MathSciNet  Google Scholar 

  16. Vinyas, M., Harursampath, D., Kattimani, S.C.: Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory. Struct. Eng. Mech. 73(6), 667–684 (2020)

    Google Scholar 

  17. Shariyat, M., Mohammadjani, R.: 3D nonlinear variable strain-rate-dependent-order fractional thermoviscoelastic dynamic stress investigation and vibration of thick transversely graded rotating annular plates/discs. Struct. Eng. Mech. 73(6), 667–684 (2020)

    MATH  Google Scholar 

  18. Banic, D., Bacciocchi, M., Tornabene, F., Ferreira, A.J.: Influence of Winkler–Pasternak foundation on the vibrational behavior of plates and shells reinforced by agglomerated carbon nanotubes. Appl. Sci. 7(12), 1228 (2017)

    Article  Google Scholar 

  19. Akgöz, B., Civalek, Ö.: A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos. Struct. 176, 1028–1038 (2017)

    Article  Google Scholar 

  20. Shahsavari, D., Shahsavari, M., Li, L., Karami, B.: A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 72, 134–149 (2018)

    Article  Google Scholar 

  21. Shahsavari, D., Karami, B., Mansouri, S.: Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories. Eur. J. Mech. A. Solids 67, 200–214 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jena, S.K., Chakraverty, S., Malikan, M., Tornabene, F.: Stability analysis of single-walled carbon nanotubes embedded in Winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory. Mech. Based Des. Struct. Mach. 2019, 1–15 (2019)

    Google Scholar 

  23. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91(1), 9–19 (2009)

    Article  Google Scholar 

  24. Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P., Eslami, M.R.: Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation. Compos. Struct. 112, 292–307 (2014)

    Article  Google Scholar 

  25. Tornabene, F., Fantuzzi, N., Bacciocchi, M.: Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Compos. B 115, 449–476 (2017)

    Article  Google Scholar 

  26. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. B 89, 187–218 (2016)

    Article  Google Scholar 

  27. Ghasemi, A.R., Mohandes, M., Dimitri, R., Tornabene, F.: Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Compos. B 167, 700–716 (2019)

    Article  Google Scholar 

  28. Loy, C.T., Lam, K.Y., Shu, C.: Analysis of cylindrical shells using generalized differential quadrature. Shock Vib. 4, 193–198 (1997)

    Article  Google Scholar 

  29. Sharif Zarei, M., Hajmohammad, M.H., Mostafavifar, M., Mohammadimehr, M.: Influence of temperature change and humidity condition on free vibration analysis of a nano composite sandwich plate resting on orthotropic Pasternak foundation by considering agglomeration effect. J. Sandw. Struct. Mater. 2017, 1099636217735118 (2017)

    Google Scholar 

  30. Mohammadimehr, M., Rousta Navi, B., Ghorbanpour Arani, A.: Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method. Compos. Struct. 131, 654–671 (2015)

    Article  Google Scholar 

  31. Mohammadimehr, M., Mostafavifar, M.: Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT. Compos. B 94, 253–270 (2016)

    Article  Google Scholar 

  32. Merkan, K., Demir, C., Civalek, Ö.: Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique. Curv. Layer. Struct. 3(1), 82–90 (2016)

    Google Scholar 

  33. Dindarloo, M.H., Li, L., Dimitri, R., Tornabene, F.: Nonlocal elasticity response of doubly-curved nanoshells. Symmetry 12(3), 466 (2020)

    Article  Google Scholar 

  34. Jouneghani, F.Z., Babamoradi, H., Dimitri, R., Tornabene, F.: A modified couple stress elasticity for non-uniform composite laminated beams based on the Ritz formulation. Molecules 25(6), 1404 (2020)

    Article  Google Scholar 

  35. Sedighi, H.M., Ouakad, H.M., Dimitri, R., Tornabene, F.: Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment. Phys. Scr. 95(6), 065204 (2020)

    Article  ADS  Google Scholar 

  36. Biswal, M., Sahu, S.Kr., Asha, A.V., Nanda, N.: Hygrothermal effects on buckling of composite shell-experimental and FEM results. Steel Compos. Struct. 22(6), 1445–1463 (2016)

  37. Amir, S., Khorasani, M., BabaAkbar-Zarei, H.: Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. J. Sandw. Struct. Mater. (2018). https://doi.org/10.1177/1099636218795385

    Article  Google Scholar 

  38. Frostig, Y., Thomsen, O.T.: High-order free vibration of sandwich panels with a flexible core. Int. J. Solids Struct. 41(5–6), 1697–1724 (2004)

    Article  Google Scholar 

  39. Jalali, S.K., Heshmati, M.: Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets. Thin Walled Struct. 100, 14–24 (2016)

    Article  Google Scholar 

  40. Rafiee, M., Yang, J., Kitipornchai, S.: Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Comput. Math. Appl. 66(7), 1147–1160 (2013)

    Article  Google Scholar 

  41. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126(3), 250–257 (2004)

    Article  Google Scholar 

  42. Mohammadimehr, M., Salemi, M.: Bending and buckling analysis of functionally graded Mindlin nano-plate model based on strain gradient elasticity theory. Indian J. Sci. Res. 2(2), 587–598 (2014)

    Google Scholar 

  43. Ko, W.L., Jackson, R.H.: Combined compressive and shear buckling analysis of hypersonic aircraft structural sandwich panels. NASA (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Tornabene.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the top face sheet

$$\begin{aligned}&\begin{array}{l} -\rho _{\mathrm{t}} {h}_{\mathrm{t}} \frac{\partial ^{2}{u}_{\mathrm{0t}} }{\partial {t}^{2}}+{A}_{11}^{\mathrm{t}} \left( {\frac{\partial ^{2}{u}_{\mathrm{0t}} }{\partial {x}^{2}}-\frac{\partial ^{2}\alpha _{11}^{\mathrm{t}} }{\partial {x}}\Delta {T}} \right) +{A}_{12}^{\mathrm{t}} \left( {\frac{\partial ^{2}{v}_{\mathrm{0t}} }{\partial {x}\partial {y}}-\frac{\partial \alpha _{22}^{\mathrm{t}} }{\partial {x}}\Delta {T}} \right) +{A}_{66}^{\mathrm{t}} \left( {\frac{\partial ^{2}{u}_{\mathrm{0t}} }{\partial {x}^{2}}-\frac{\partial ^{2}{v}_{\mathrm{0t}} }{\partial {x}\partial {y}}} \right) \\ -{B}_{11}^{\mathrm{t}} \frac{\partial ^{3}{w}_{\mathrm{t}} }{\partial {x}^{3}}-{B}_{12}^{\mathrm{t}} \frac{{\partial }^{3}{w}_{\mathrm{t}} }{\partial {x}\partial {y}^{2}}-2{B}_{66}^{\mathrm{t}} \frac{{\partial }^{3}{w}_{\mathrm{t}} }{\partial {x}\partial {y}^{2}}-2{G}_{12} {l}_{0}^{2} {h}_{\mathrm{t}} \left( {\frac{{\partial }^{4}{u}_{0{\mathrm{t}}} }{\partial {x}^{4}}+\frac{\partial ^{4}{v}_{0{\mathrm{t}}} }{\partial {x}^{3}\partial {y}}+\frac{{\partial }^{4}{u}_{0{\mathrm{t}}} }{\partial {x}^{2}\partial {y}^{2}}+\frac{{\partial }^{4}{v}_{0{\mathrm{t}}} }{\partial {x}\partial {y}^{3}}} \right) \\ -2{G}_{12} {l}_{0}^{2} {h}_{\mathrm{t}} \left( {\frac{4}{5}\frac{{\partial }^{4}{u}_{0{\mathrm{t}}} }{\partial {x}^{4}}+\frac{4}{15}\frac{{\partial }^{4}{v}_{0{\mathrm{t}}} }{\partial {x}^{3}\partial {y}}+\frac{4}{3}\frac{{\partial }^{4}{u}_{0{\mathrm{t}}} }{\partial {x}^{2}\partial {y}^{2}}+\frac{4}{15}\frac{{\partial }^{4}{v}_{0{\mathrm{t}}} }{\partial {x}\partial {y}^{3}}+\frac{8}{15}\frac{{\partial }^{4}{u}_{0{\mathrm{t}}} }{\partial {y}^{4}}} \right) \\ -\frac{1}{4}{G}_{12} {l}_{2}^{2} {h}_{\mathrm{t}} \left( {\frac{{\partial }^{4}{u}_{\mathrm{ot}} }{\partial {x}^{2}\partial {y}^{2}}-\frac{{\partial }^{4}{v}_{\mathrm{ot}} }{\partial {x}^{3}\partial {y}}+\frac{{\partial }^{4}{u}_{\mathrm{ot}} }{\partial {y}^{4}}-\frac{\partial ^{4}{v}_{\mathrm{ot}} }{\partial x\partial {y}^{3}}} \right) -\lambda _{\mathrm{xt}} =0 \end{array} \end{aligned}$$
(A1)
$$\begin{aligned}&\begin{array}{l} -\rho _{\mathrm{t}} {h}_{\mathrm{t}} \frac{{\partial }^{2}{v}_{\mathrm{ot}} }{\partial {t}^{2}}+{A}_{22}^{\mathrm{t}} \left( {\frac{{\partial }^{2}{v}_{\mathrm{ot}} }{\partial {y}^{2}}-\frac{\partial \alpha _{22}^{\mathrm{t}} }{\partial {y}}\Delta \,{T}} \right) +{A}_{12}^{\mathrm{t}} \left( {\frac{\partial ^{2}{u}_{\mathrm{ot}} }{\partial {x}\partial {y}}-\frac{\partial \alpha _{11}^{\mathrm{t}} }{\partial {y}}\Delta \,{T}} \right) +{A}_{66}^{\mathrm{t}} \left( {\frac{{\partial }^{2}{u}_{\mathrm{ot}} }{\partial {x}\partial {y}}-\frac{{\partial }^{2}{v}_{\mathrm{ot}} }{\partial {x}^{2}}} \right) \\ -{B}_{22}^{\mathrm{t}} \frac{{\partial }^{3}{w}_{\mathrm{t}} }{\partial {y}^{3}}-{B}_{21}^{\mathrm{t}} \frac{{\partial }^{3}{w}_{\mathrm{t}} }{\partial {x}^{2}\partial {y}}-2{B}_{66}^{\mathrm{t}} \frac{{\partial }^{3}{w}_{\mathrm{t}} }{\partial {x}^{2}\partial {y}}-2{G}_{12} {l}_{0}^{2} {h}_{\mathrm{t}} \left( {\frac{{\partial }^{4}{v}_{\mathrm{ot}} }{\partial {x}\partial {y}^{3}}+\frac{\partial ^{4}{v}_{\mathrm{ot}} }{\partial {y}^{4}}+\frac{{\partial }^{4}{u}_{\mathrm{ot}} }{\partial {x}^{3}\partial {y}}+\frac{{\partial }^{4}{v}_{\mathrm{ot}} }{\partial {x}^{2}\partial {y}^{2}}} \right) \\ -2{G}_{12} {l}_{1}^{2} {h}_{\mathrm{t}} \left( {\frac{4}{15}\frac{{\partial }^{4}{v}_{\mathrm{ot}} }{\partial {x}\partial {y}^{3}}+\frac{4}{5}\frac{{\partial }^{4}{v}_{\mathrm{ot}} }{\partial {y}^{4}}+\frac{4}{3}\frac{{\partial }^{4}{v}_{\mathrm{ot}} }{\partial {x}^{2}\partial {y}^{2}}+\frac{4}{15}\frac{{\partial }^{4}{u}_{\mathrm{ot}} }{\partial {x}^{3}\partial {y}}+\frac{8}{15}\frac{{\partial }^{4}{v}_{\mathrm{ot}} }{\partial {x}^{4}}} \right) \\ -\frac{1}{4}G_{12} l_{2}^{2} h_{\mathrm{t}} \left( {\frac{\partial ^{4}v_{ot} }{\partial x^{2}\partial y^{2}}-\frac{\partial ^{4}u_{ot} }{\partial x^{3}\partial y}+\frac{\partial ^{4}v_{ot} }{\partial x^{4}}-\frac{\partial ^{4}u_{ot} }{\partial x\partial y^{3}}} \right) -\lambda _{xt} =0 \\ \end{array} \end{aligned}$$
(A2)
$$\begin{aligned}&{\begin{array}{l} -\rho _{\mathrm{t}} h_{\mathrm{t}} \frac{\partial ^{2}w_{\mathrm{t}} }{\partial t^{2}}+\frac{1}{12}\rho _{\mathrm{t}} h_{\mathrm{t}}^{3} \left( \frac{\partial ^{4}w_{\mathrm{t}} }{\partial x^{2}\partial t^{2}}+\frac{\partial ^{4}w_{\mathrm{t}} }{\partial y^{2}\partial t^{2}} \right) +B_{11}^{t} \left( \frac{\partial ^{3}u_{ot} }{\partial x^{3}}-\frac{\partial \alpha _{11}^{t} }{\partial x^{2}}\Delta T \right) +B_{12}^{t} \left( \frac{\partial ^{3}v_{ot} }{\partial x^{2}\partial y}-\frac{\partial \alpha _{22}^{t} }{\partial x^{2}}\Delta T \right) \\ +B_{22}^{t} \left( \frac{\partial ^{3}v_{ot} }{\partial y^{3}}-\frac{\partial ^{2}\alpha _{22}^{t} }{\partial y^{2}}\Delta T \right) +B_{21}^{t} \left( \frac{\partial ^{3}u_{ot} }{\partial x\partial y^{2}}-\frac{\partial ^{2}\alpha _{11}^{t} }{\partial x^{2}}\Delta T \right) +2B_{66}^{t} \left( \frac{\partial ^{3}u_{ot} }{\partial x\partial y^{2}}+\frac{\partial ^{3}v_{ot} }{\partial x^{2}\partial y} \right) \\ -4D_{66}^{t} \frac{\partial ^{4}w_{\mathrm{t}} }{\partial x^{2}\partial y^{2}}-D_{11}^{t} \frac{\partial ^{4}w_{\mathrm{t}} }{\partial x^{4}}-D_{12}^{t} \frac{\partial ^{4}w_{\mathrm{t}} }{\partial x^{2}\partial y^{2}}-D_{22}^{t} \frac{\partial ^{4}w_{\mathrm{t}} }{\partial y^{4}}-D_{21}^{t} \frac{\partial ^{4}w_{\mathrm{t}} }{\partial x^{2}\partial y^{2}} \\ -{G}_{12} {l}_{0}^{2} {h}_{{t}} \left( 2\frac{{\partial }^{4}{w}_{{t}} }{\partial {y}^{4}}-\frac{1}{2}{h}_{{t}}^{2} \frac{{\partial }^{6}{w}_{{t}} }{\partial {x}^{4}\partial {y}^{2}}-\frac{1}{6}{h}_{{t}}^{2} \frac{{\partial }^{6}{w}_{{t}} }{\partial {x}^{6}}-\frac{1}{6}{h}_{{t}}^{2} \frac{{\partial }^{6}{w}_{{t}} }{\partial {y}^{6}}-\frac{1}{2}{h}_{{t}}^{2} \frac{{\partial }^{6}{w}_{{t}} }{\partial {x}^{2}\partial {y}^{4}}+2\frac{{\partial }^{4}{w}_{{t}} }{\partial {x}^{4}}+4\frac{{\partial }^{4}{w}_{{t}} }{\partial {x}^{2}\partial {y}^{2}} \right) \\ -{G}_{12} {l}_{1}^{2} {h}_{\mathrm{t}} \left( \frac{8}{15}\frac{{\partial }^{4}{w}_{\mathrm{t}} }{\partial {y}^{4}}-\frac{1}{5}{h}_{\mathrm{t}}^{2} \frac{{\partial }^{6}{w}_{\mathrm{t}} }{\partial {x}^{4}\partial {y}^{2}}-\frac{1}{15}{h}_{\mathrm{t}}^{2} \frac{{\partial }^{6}{w}_{\mathrm{t}} }{\partial {y}^{6}}-\frac{1}{5}{h}_{\mathrm{t}}^{2} \frac{{\partial }^{6}{w}_{\mathrm{t}} }{\partial {x}^{2}\partial {y}^{4}}+\frac{8}{15}\frac{{\partial }^{4}{w}_{\mathrm{t}} }{\partial {x}^{4}}+\frac{16}{15}\frac{{\partial }^{4}{w}_{\mathrm{t}} }{\partial {x}^{2}\partial {y}^{2}} \right) \\ -{G}_{12} {l}_{2}^{2} {h}_{\mathrm{t}} \left( \frac{{\partial }^{4}{w}_{\mathrm{t}} }{\partial {y}^{4}}+\frac{{\partial }^{4}{w}_{\mathrm{t}} }{\partial {x}^{4}}+2\frac{{\partial }^{4}{w}_{\mathrm{t}} }{\partial {x}^{2}\partial {y}^{2}} \right) -{\bar{{N}}}_{\mathrm{xx}}^{\mathrm{t}} \left( \frac{{\partial }^{2}{w}_{\mathrm{t}} }{\partial {x}^{2}}+\mu ^{\mathrm{t}}\frac{{\partial }^{2}{w}_{\mathrm{t}} }{\partial {y}^{2}}\right) - \frac{1}{2}{h}_{\mathrm{t}} \left( \frac{{\partial }\lambda _{\mathrm{xt}}}{\partial {x}}+\frac{{\partial }\lambda _{\mathrm{yt}}}{\partial {y}}\right) -\lambda _{\mathrm{zt}} = 0\\ \\ \end{array}} \end{aligned}$$
(A3)

For the core

$$\begin{aligned}&-{\rho }_{\mathrm{c}} {h}_{\mathrm{c}} \frac{{\partial }^{2}{u}_{\mathrm{oc}} }{\partial {t}^{2}}-\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{u}_{2{\mathrm{c}}} }{\partial {t}^{2}}+{\lambda }_{\mathrm{xt}} -{\lambda }_{\mathrm{xb}} =0 \end{aligned}$$
(A4)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{u}_{1{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{80}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{5}\frac{{\partial }^{2}{u}_{3{\mathrm{c}}} }{\partial {t}^{2}}-{A}_{55}^{\mathrm{C}} \left( {{u}_{1{\mathrm{c}}} +\frac{\partial {w}_{0{\mathrm{c}}} }{\partial {x}}} \right) \\ -{B}_{55}^{\mathrm{C}} \left( {2{u}_{2{\mathrm{c}}} +\frac{\partial {w}_{1{\mathrm{c}}} }{\partial {x}}} \right) -{D}_{55}^{\mathrm{C}} \left( {3{u}_{3{\mathrm{c}}} +\frac{\partial {w}_{2{\mathrm{c}}} }{\partial {x}}} \right) -\frac{1}{2}{h}_{\mathrm{c}} \left( {{\lambda }_{\mathrm{xt}} +{\lambda }_{\mathrm{xb}} } \right) =0 \\ \end{array} \end{aligned}$$
(A5)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{u}_{0{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{80}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{5}\frac{{\partial }^{2}{u}_{2{\mathrm{c}}} }{\partial {t}^{2}}-2{B}_{55}^{\mathrm{C}} \left( {{u}_{1{\mathrm{c}}} +\frac{\partial {w}_{0{\mathrm{c}}} }{\partial {x}}} \right) \\ -2{D}_{55}^{\mathrm{C}} \left( {2{u}_{2{\mathrm{c}}} +\frac{\partial {w}_{1{\mathrm{c}}} }{\partial {x}}} \right) -2{F}_{55}^{\mathrm{C}} \left( {3{u}_{3{\mathrm{c}}} +\frac{\partial {w}_{2{\mathrm{c}}} }{\partial {x}}} \right) +\frac{1}{4}{h}_{\mathrm{c}}^{2}\left( {{\lambda }_{\mathrm{xt}} -{\lambda }_{\mathrm{xb}} } \right) =0 \\ \end{array} \end{aligned}$$
(A6)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{80}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{5}\frac{{\partial }^{2}{u}_{1{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{448}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{7}\frac{{\partial }^{2}{u}_{3{\mathrm{c}}} }{\partial {t}^{2}}-3{D}_{55}^{\mathrm{C}} \left( {{u}_{1{\mathrm{c}}} +\frac{\partial {w}_{0{\mathrm{c}}} }{\partial {x}}} \right) \\ -3{F}_{55}^{\mathrm{C}} \left( {2{u}_{2{\mathrm{c}}} +\frac{\partial {w}_{1{\mathrm{c}}} }{\partial {x}}} \right) -3{L}_{55}^{\mathrm{C}} \left( {3{u}_{3{\mathrm{c}}} +\frac{\partial {w}_{2{\mathrm{c}}} }{\partial {x}}} \right) \frac{1}{8}{h}_{\mathrm{c}}^{3}\left( {{\lambda }_{\mathrm{xt}} +{\lambda }_{\mathrm{xb}} } \right) =0\\ \end{array} \end{aligned}$$
(A7)
$$\begin{aligned}&-{\rho }_{\mathrm{c}} {h}_{\mathrm{c}} \frac{{\partial }^{2}{v}_{1{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{v}_{1{\mathrm{c}}} }{\partial {t}^{2}}+{\lambda }_{\mathrm{yt}} -{\lambda }_{\mathrm{yb}} =0 \end{aligned}$$
(A8)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{v}_{1{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{80}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{5}\frac{{\partial }^{2}{v}_{3{\mathrm{c}}} }{\partial {t}^{2}}-{A}_{44}^{\mathrm{C}} \left( {{v}_{1{\mathrm{c}}} +\frac{\partial {w}_{0{\mathrm{c}}} }{\partial {y}}} \right) \\ -{B}_{44}^{\mathrm{C}} \left( {2{v}_{2{\mathrm{c}}} +\frac{\partial {w}_{1{\mathrm{c}}} }{\partial {y}}} \right) -{D}_{44}^{\mathrm{C}} \left( {3{v}_{3{\mathrm{c}}} +\frac{\partial {w}_{2{\mathrm{c}}} }{\partial {y}}} \right) -\frac{1}{2}{h}_{\mathrm{c}} \left( {{\lambda }_{\mathrm{yt}} +{\lambda }_{\mathrm{yb}} } \right) =0 \\ \end{array} \end{aligned}$$
(A9)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{v}_{0{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{80}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{5}\frac{{\partial }^{2}{v}_{2{\mathrm{c}}} }{\partial {t}^{2}}-2{B}_{44}^{\mathrm{C}} \left( {{v}_{1{\mathrm{c}}} +\frac{\partial {w}_{0{\mathrm{c}}} }{\partial {y}}} \right) \\ -2{D}_{44}^{\mathrm{C}} \left( {2{v}_{2{\mathrm{c}}} +\frac{\partial {w}_{1{\mathrm{c}}} }{\partial {y}}} \right) -2{F}_{44}^{\mathrm{C}} \left( {3{v}_{3{\mathrm{c}}} +\frac{\partial {w}_{2{\mathrm{c}}} }{\partial {y}}} \right) +\frac{1}{4}{h}_{\mathrm{c}}^{2} \left( {{\lambda }_{\mathrm{yt}} -{\lambda }_{\mathrm{yb}} } \right) =0 \\ \end{array} \end{aligned}$$
(A10)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{80}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{5}\frac{{\partial }^{2}{v}_{1{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{448}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{7}\frac{{\partial }^{2}{v}_{3{\mathrm{c}}} }{\partial {t}^{2}}-3{D}_{44}^{\mathrm{C}} \left( {{v}_{1{\mathrm{c}}} +\frac{\partial {w}_{0{\mathrm{c}}} }{\partial {y}}} \right) \\ -3{F}_{44}^{\mathrm{C}} \left( {2{v}_{2{\mathrm{c}}} +\frac{\partial {w}_{1{\mathrm{c}}} }{\partial {y}}} \right) -3{L}_{44}^{\mathrm{C}} \left( {3{v}_{3{\mathrm{c}}} +\frac{\partial {w}_{2{\mathrm{c}}} }{\partial {y}}} \right) -\frac{1}{8}{h}_{\mathrm{c}}^{3} \left( {{\lambda }_{\mathrm{yt}} +{\lambda }_{\mathrm{yb}} } \right) =0 \\ \end{array} \end{aligned}$$
(A11)
$$\begin{aligned}&\begin{array}{l} -{\rho }_{\mathrm{c}} {h}_{\mathrm{c}} \frac{{\partial }^{2}{w}_{0{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{w}_{2{\mathrm{c}}} }{\partial {t}^{2}}+{A}_{55}^{\mathrm{C}} \left( {\frac{\partial {u}_{1{\mathrm{c}}} }{\partial {x}}+\frac{\partial {w}_{0{\mathrm{c}}} }{\partial {x}^{2}}} \right) +{A}_{44}^{\mathrm{C}} \left( {\frac{\partial {v}_{1{\mathrm{c}}} }{\partial {y}}+\frac{{\partial }^{2}{w}_{0{\mathrm{c}}} }{\partial {y}^{2}}} \right) \\ +{B}_{55}^{\mathrm{C}} \left( {2\frac{\partial {u}_{2{\mathrm{c}}} }{\partial {x}}+\frac{\partial ^{2}{w}_{1{\mathrm{c}}} }{\partial {x}^{2}}} \right) +{B}_{44}^{\mathrm{C}} \left( {2\frac{\partial {v}_{2{\mathrm{c}}} }{\partial {y}}+\frac{{\partial }^{2}{w}_{1{\mathrm{c}}} }{\partial {y}^{2}}} \right) +{D}_{55}^{\mathrm{C}} \left( {3\frac{\partial {v}_{3{\mathrm{c}}} }{\partial {x}}+\frac{{\partial }^{2}{w}_{2{\mathrm{c}}} }{\partial {x}^{2}}} \right) \\ +{D}_{44}^{\mathrm{C}} \left( {3\frac{\partial {v}_{3{\mathrm{c}}} }{\partial {y}}+\frac{\partial ^{2}{w}_{2{\mathrm{c}}} }{\partial {y}^{2}}} \right) +{\lambda }_{\mathrm{zt}} -{\lambda }_{\mathrm{zb}} =0 \\ \end{array} \end{aligned}$$
(A12)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{w}_{1{\mathrm{c}}} }{\partial {t}^{2}}-{A}_{33}^{\mathrm{C}} \left( {{w}_{1{\mathrm{c}}} -{\alpha }_{33}^{\mathrm{c}} \Delta \,{T}} \right) -2{B}_{33}^{\mathrm{C}} {w}_{2{\mathrm{c}}} +{B}_{55}^{\mathrm{C}} \left( {2\frac{\partial {u}_{1{\mathrm{c}}} }{\partial {x}}+\frac{{\partial }^{2}{w}_{0{\mathrm{c}}} }{\partial {x}^{2}}} \right) \\ +{B}_{44}^{\mathrm{C}} \left( {2\frac{\partial {v}_{1{\mathrm{c}}} }{\partial {y}}+\frac{\partial ^{2}{w}_{1{\mathrm{c}}} }{\partial {y}^{2}}} \right) +{D}_{55}^{\mathrm{C}} \left( {2\frac{\partial {u}_{2{\mathrm{c}}} }{\partial {x}}+\frac{{\partial }^{2}{w}_{1{\mathrm{c}}} }{\partial {x}^{2}}} \right) +{D}_{44}^{\mathrm{C}} \left( {2\frac{\partial {v}_{2{\mathrm{c}}} }{\partial {y}}+\frac{{\partial }^{2}{w}_{1{\mathrm{c}}} }{\partial {y}^{2}}} \right) \\ +{F}_{55}^{\mathrm{C}} \left( {3\frac{\partial {u}_{3{\mathrm{c}}} }{\partial {x}}+\frac{\partial ^{2}{w}_{2{\mathrm{c}}} }{\partial {x}^{2}}} \right) +{F}_{44}^{\mathrm{C}} \left( {3\frac{\partial {v}_{3{\mathrm{c}}} }{\partial {y}}+\frac{{\partial }^{2}{w}_{2{\mathrm{c}}} }{\partial {y}^{2}}} \right) -\frac{1}{2}{h}_{\mathrm{c}} \left( {{\lambda }_{\mathrm{zt}} +{\lambda }_{\mathrm{zb}} } \right) =0 \\ \\ \end{array} \end{aligned}$$
(A13)
$$\begin{aligned}&\begin{array}{l} -\frac{1}{12}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{3}\frac{{\partial }^{2}{w}_{0{\mathrm{c}}} }{\partial {t}^{2}}-\frac{1}{80}{\rho }_{\mathrm{c}} {h}_{\mathrm{c}}^{5}\frac{{\partial }^{2}{w}_{2{\mathrm{c}}} }{\partial {t}^{2}}+2{B}_{33}^{\mathrm{C}} \left( {{w}_{1{\mathrm{c}}} -{\alpha }_{33}^{\mathrm{c}} \Delta \,{T}} \right) -4{D}_{33}^{\mathrm{C}} {w}_{2{\mathrm{c}}} +{D}_{55}^{\mathrm{C}} \left( {2\frac{\partial {u}_{1{\mathrm{c}}} }{\partial {x}}+\frac{{\partial }^{2}{w}_{0{\mathrm{c}}} }{\partial {x}^{2}}} \right) \\ +{D}_{44}^{\mathrm{C}} \left( {2\frac{\partial {v}_{1{\mathrm{c}}} }{\partial {y}}+\frac{\partial ^{2}{w}_{0{\mathrm{c}}} }{\partial {y}^{2}}} \right) +{F}_{55}^{\mathrm{C}} \left( {2\frac{\partial {u}_{2{\mathrm{c}}} }{\partial {x}}+\frac{{\partial }^{2}{w}_{1{\mathrm{c}}} }{\partial {x}^{2}}} \right) +{F}_{44}^{\mathrm{C}} \left( {2\frac{\partial {v}_{2{\mathrm{c}}} }{\partial {y}}+\frac{{\partial }^{2}{w}_{1{\mathrm{c}}} }{\partial {y}^{2}}} \right) \\ +{L}_{55}^{\mathrm{C}} \left( {3\frac{\partial {u}_{3{\mathrm{c}}} }{\partial {x}}+\frac{\partial ^{2}{w}_{2{\mathrm{c}}} }{\partial {x}^{2}}} \right) +{L}_{44}^{\mathrm{C}} \left( {3\frac{\partial {v}_{3{\mathrm{c}}} }{\partial {y}}+\frac{{\partial }^{2}{w}_{2{\mathrm{c}}} }{\partial {y}^{2}}} \right) +\frac{1}{4}{h}_{\mathrm{c}}^{2}\left( {{\lambda }_{\mathrm{zt}} -{\lambda }_{\mathrm{zb}} } \right) =0 \\ \end{array} \end{aligned}$$
(A14)

For bottom face sheet

$$\begin{aligned}&\begin{array}{l} -{\rho }_{\mathrm{b}} {h}_{\mathrm{b}} \frac{{\partial }^{2}{u}_{\mathrm{ob}} }{\partial {t}^{2}}+{A}_{11}^{\mathrm{b}} \left( {\frac{{\partial }^{2}{u}_{\mathrm{ob}} }{\partial {x}^{2}}-\frac{\partial ^{2}{\alpha }_{11}^{\mathrm{b}} }{\partial {x}}\Delta \,{T}} \right) +{A}_{12}^{\mathrm{b}} \left( {\frac{{\partial }^{2}{v}_{\mathrm{ot}} }{\partial {x}\partial {y}}-\frac{\partial \alpha _{22}^{\mathrm{b}} }{\partial {x}}\Delta \,{T}} \right) \\ +{A}_{66}^{\mathrm{b}} \left( {\frac{{\partial }^{2}{u}_{\mathrm{ob}} }{\partial {y}^{2}}-\frac{{\partial }^{2}{v}_{\mathrm{ob}} }{\partial {x}\partial {y}}} \right) -{B}_{11}^{\mathrm{b}} \frac{{\partial }^{3}{w}_{\mathrm{b}} }{\partial {x}^{3}}-{B}_{12}^{\mathrm{b}} \frac{\partial ^{3}{w}_{\mathrm{b}} }{\partial {x}\partial {y}^{2}}-2{B}_{66}^{\mathrm{b}} \frac{{\partial }^{3}{w}_{\mathrm{b}} }{\partial {x}\partial {y}^{2}} \\ -2{G}_{12} {l}_{0}^{2} {h}_{\mathrm{b}} \left( {\frac{{\partial }^{4}{u}_{\mathrm{ob}} }{\partial {x}^{4}}+\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}^{3}\partial {y}}+\frac{\partial ^{4}{u}_{\mathrm{ob}} }{\partial {x}^{2}\partial {y}^{2}}+\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}\partial {y}^{3}}} \right) \\ -2{G}_{12} {l}_{1}^{2} {h}_{\mathrm{b}} \left( {\frac{4}{5}\frac{{\partial }^{4}{u}_{\mathrm{otb}} }{\partial {x}^{4}}+\frac{4}{15}\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}^{3}\partial {y}}+\frac{4}{3}\frac{{\partial }^{4}{u}_{\mathrm{ob}} }{\partial {x}^{2}\partial {y}^{2}}+\frac{4}{15}\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}\partial {y}^{3}}+\frac{8}{15}\frac{{\partial }^{4}{u}_{\mathrm{ob}} }{\partial {y}^{4}}} \right) \\ -\frac{1}{4}{G}_{12} {l}_{2}^{2} {h}_{\mathrm{b}} \left( {\frac{{\partial }^{4}{u}_{\mathrm{ob}} }{\partial {x}^{2}\partial {y}^{2}}-\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}^{3}\partial {y}}+\frac{{\partial }^{4}{u}_{\mathrm{ob}} }{\partial {y}^{4}}-\frac{\partial ^{4}{v}_{\mathrm{ob}} }{\partial {x}\partial {y}^{3}}} \right) +{\lambda }_{\mathrm{xb}} =0 \\ \end{array} \end{aligned}$$
(A15)
$$\begin{aligned}&\begin{array}{l} -{\rho }_{\mathrm{t}} {h}_{\mathrm{t}} \frac{{\partial }^{2}{v}_{\mathrm{ob}} }{\partial {t}^{2}}+{A}_{22}^{\mathrm{b}} \left( {\frac{{\partial }^{2}{v}_{\mathrm{ob}} }{\partial {y}^{2}}-\frac{\partial \alpha _{22}^{\mathrm{b}} }{\partial {y}}\Delta \,{T}} \right) +{A}_{12}^{\mathrm{b}} \left( {\frac{\partial ^{2}{u}_{\mathrm{ob}} }{\partial {x}\partial {y}}-\frac{\partial {\alpha }_{11}^{\mathrm{b}} }{\partial {y}}\Delta \,{T}} \right) \\ +{A}_{66}^{\mathrm{b}} \left( {\frac{{\partial }^{2}{u}_{\mathrm{ob}} }{\partial {x}\partial {y}}-\frac{{\partial }^{2}{v}_{\mathrm{ob}} }{\partial {x}^{2}}} \right) -{B}_{22}^{\mathrm{b}} \frac{{\partial }^{3}{w}_{\mathrm{b}} }{\partial {y}^{3}}-{B}_{21}^{\mathrm{b}} \frac{\partial ^{3}{w}_{\mathrm{b}} }{\partial {x}^{2}\partial {y}}-2{B}_{66}^{\mathrm{b}} \frac{{\partial }^{3}{w}_{\mathrm{b}} }{\partial {x}^{2}\partial {y}} \\ -2{G}_{12} {l}_{0}^{2} {h}_{\mathrm{b}} \left( {\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}\partial {y}^{3}}+\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {y}^{4}}+\frac{\partial ^{4}{u}_{\mathrm{ob}} }{\partial {x}^{3}\partial {y}}+\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}^{2}\partial {y}^{2}}} \right) \\ -2{G}_{12} {l}_{1}^{2} {h}_{\mathrm{b}} \left( {\frac{4}{15}\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}\partial {y}^{3}}+\frac{4}{5}\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {y}^{4}}+\frac{4}{3}\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}^{2}\partial {y}^{2}}+\frac{4}{15}\frac{{\partial }^{4}{u}_{\mathrm{ob}} }{\partial {x}^{3}\partial {y}}+\frac{8}{15}\frac{{\partial }^{4}{v}_{\mathrm{ob}} }{\partial {x}^{4}}} \right) \\ -\frac{1}{4}G_{12} l_{2}^{2} h_{\mathrm{b}} \left( {\frac{\partial ^{4}v_{ob} }{\partial x^{2}\partial y^{2}}-\frac{\partial ^{4}u_{ob} }{\partial x^{3}\partial y}+\frac{\partial ^{4}v_{ob} }{\partial x^{4}}-\frac{\partial ^{4}u_{ob} }{\partial x\partial y^{3}}} \right) +\lambda _{yb} =0 \\ \end{array} \end{aligned}$$
(A16)
$$\begin{aligned}&{\begin{array}{l} -\rho _{\mathrm{t}} h_{\mathrm{t}} \frac{\partial ^{2}w_{\mathrm{b}} }{\partial t^{2}}+\frac{1}{12}\rho _{\mathrm{t}} h_{\mathrm{t}}^{b} \left( \frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{2}\partial t^{2}}+\frac{\partial ^{4}w_{\mathrm{b}} }{\partial y^{2}\partial t^{2}} \right) +B_{11}^{b} \left( \frac{\partial ^{3}u_{ob} }{\partial x^{3}}-\frac{\partial \alpha _{11}^{b} }{\partial x^{2}}\Delta T \right) +B_{12}^{b} \left( \frac{\partial ^{3}v_{ob} }{\partial x^{2}\partial y}-\frac{\partial \alpha _{22}^{b} }{\partial x^{2}}\Delta T \right) \\ +B_{22}^{t} \left( \frac{\partial ^{3}v_{ob} }{\partial y^{3}}-\frac{\partial ^{2}\alpha _{22}^{b} }{\partial y^{2}}\Delta T \right) +B_{21}^{b} \left( \frac{\partial ^{3}u_{ob} }{\partial x\partial y^{2}}-\frac{\partial ^{2}\alpha _{11}^{b} }{\partial x^{2}}\Delta T \right) +2B_{66}^{t} \left( \frac{\partial ^{3}u_{ob} }{\partial x\partial y^{2}}+\frac{\partial ^{3}v_{ob} }{\partial x^{2}\partial y} \right) \\ -4D_{66}^{b} \frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{2}\partial y^{2}}-D_{11}^{b} \frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{4}}-D_{12}^{b} \frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{2}\partial y^{2}}-D_{22}^{b} \frac{\partial ^{4}w_{\mathrm{b}} }{\partial y^{4}}-D_{21}^{b} \frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{2}\partial y^{2}} \\ -G_{12} l_{0}^{2} h_{\mathrm{b}} \left( 2\frac{\partial ^{4}w_{\mathrm{b}} }{\partial y^{4}}-\frac{1}{2}h_{\mathrm{b}}^{2} \frac{\partial ^{6}w_{\mathrm{b}} }{\partial x^{4}\partial y^{2}}-\frac{1}{6}h_{\mathrm{b}}^{2} \frac{\partial ^{6}w_{\mathrm{b}} }{\partial x^{6}}-\frac{1}{6}h_{\mathrm{b}}^{2} \frac{\partial ^{6}w_{\mathrm{b}} }{\partial y^{6}}-\frac{1}{2}h_{\mathrm{b}}^{2} \frac{\partial ^{6}w_{\mathrm{b}} }{\partial x^{2}\partial y^{4}}+2\frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{4}}+4\frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{2}\partial y^{2}} \right) \\ -G_{12} l_{1}^{2} h_{\mathrm{b}} \left( \frac{8}{15}\frac{\partial ^{4}w_{\mathrm{b}} }{\partial y^{4}}-\frac{1}{5}h_{\mathrm{b}}^{2} \frac{\partial ^{6}w_{\mathrm{b}} }{\partial x^{4}\partial y^{2}}-\frac{1}{15}h_{\mathrm{b}}^{2} \frac{\partial ^{6}w_{\mathrm{b}} }{\partial y^{6}}-\frac{1}{5}h_{\mathrm{b}}^{2} \frac{\partial ^{6}w_{\mathrm{b}} }{\partial x^{2}\partial y^{4}}+\frac{8}{15}\frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{4}}+\frac{16}{15}\frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{2}\partial y^{2}} \right) \\ -G_{12} l_{2}^{2} h_{\mathrm{b}} \left( \frac{\partial ^{4}w_{\mathrm{b}} }{\partial y^{4}}+\frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{4}}+2\frac{\partial ^{4}w_{\mathrm{b}} }{\partial x^{2}\partial y^{2}} \right) -{\bar{{N}}}_{{xx}}^{{b}} \left( \frac{{\partial }^{2}{w}_{{b}} }{\partial {x}^{2}}+\mu ^{{b}}\frac{{\partial }^{2}{w}_{{b}} }{\partial {y}^{2}}\right) - \frac{1}{2}{h}_{{b}} \left( \frac{{\partial }\lambda _{{xb}}}{\partial {x}}+\frac{{\partial }\lambda _{{yb}}}{\partial {y}}\right) +\lambda _{{zb}}\\ +k_{g\mu } \left( \cos ^{2}\theta \frac{{\partial }^{2}{w}_{{b}} }{\partial {x}^{2}} +2 \cos \theta \sin \theta \frac{{\partial }^{2}{w}_{{b}} }{\partial {x}\partial {y}} +\sin ^{2}\theta \frac{{\partial }^{2}{w}_{{b}} }{\partial {y}^{2}} \right) \\ +k_{g\eta } \left( \sin ^{2}\theta \frac{{\partial }^{2}{w}_{{b}} }{\partial {x}^{2}} -2 \cos \theta \sin \theta \frac{{\partial }^{2}{w}_{{b}} }{\partial {x}\partial {y}} +\cos ^{2}\theta \frac{{\partial }^{2}{w}_{{b}} }{\partial {y}^{2}} \right) =0\\ \\ \end{array}} \end{aligned}$$
(A17)
$$\begin{aligned}&\mu ^{i}=\frac{\bar{N}_{yy}^{j}}{\bar{N}_{xx}^{j}}, \quad j=(t,b), \mu ^{t} = \mu ^{b} = \mu \end{aligned}$$
(A18)
$$\begin{aligned}&A_{kl}^{j},B_{kl}^{j},D_{kl}^{j} =\int \limits _{{-h} h/ 2}^{h \big / 2}{Q_{kl}^{j} \left( {1,z_{j},z_{j}^{2} } \right) \mathrm{d}z_{j} } \quad \left( {k,l=1,2,6} \right) \quad \left( {j=t,b} \right) \end{aligned}$$
(A19)
$$\begin{aligned}&A_{kl}^{c},B_{kl}^{c},D_{kl}^{c},F_{kl}^{c},L_{kl}^{c} =\int \limits _{{-h} \big / 2}^{h \big / 2} {c_{kl} \left( {1,z_{j},z_{j}^{2} ,z_{j}^{3},z_{j}^{4} } \right) \mathrm{d}z_{\mathrm{c}} } \quad \left( {k,l=3,4,5} \right) . \end{aligned}$$
(A20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiarasi, F., Babaei, M., Dimitri, R. et al. Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation. Continuum Mech. Thermodyn. 33, 911–932 (2021). https://doi.org/10.1007/s00161-020-00929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00929-6

Keywords

Navigation