Skip to main content
Log in

A Variable Step-Size Partial-Update Normalized Least Mean Square Algorithm for Second-Order Adaptive Volterra Filters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Partial-update (PU) algorithms offer reduced computational complexity to adaptive second-order Volterra filters (SOV) in nonlinear systems while retaining acceptable performance. In this paper, a new selective partial-update technique for the normalized LMS (NLMS) SOV algorithm is proposed, which requires lesser number of comparison operations per iteration than existing methods while providing close performance to the standard M-Max NLMS-SOV algorithm. Convergence properties of the proposed algorithm are enhanced by making the algorithm step-size time varying based on the natural logarithm function. Simulation experiments compare the proposed algorithm with existing PU and variable step-size NLMS-SOV algorithms, which illustrate the advantageous properties of the new algorithm. The proposed algorithm achieves both lower steady-state misalignment and faster convergence speed when compared with the fixed step-size full-update NLMS-SOV algorithm. Simulations also show that comparison operations overhead of the proposed algorithm is reduced significantly compared to that of the standard M-Max NLMS-SOV algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. M.S.E. Abadi, M.S. Shafiee, M. Zalaghi, A low computational complexity normalized subband adaptive filter algorithm employing signed regressor of input signal. EURASIP J. Adv. Signal Process. 2018(21), 1–23 (2018)

    Google Scholar 

  2. T. Aboulnasr, K. Mayyas, Complexity reduction of the NLMS algorithm via selective coefficient update. IEEE Trans. Signal Process. 47(5), 1421–1424 (1999)

    Article  Google Scholar 

  3. T. Aboulnasr, K. Mayyas, A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Trans. Signal Process. 45(3), 631–639 (1997)

    Article  Google Scholar 

  4. T. Aboulnasr, Q. Pan, Data-dependent partial update adaptive algorithms for linear and nonlinear systems, in Signal Processing Conference 2005 13th European, pp. 1–4 (2005)

  5. M.T. Akhtar, M. Abe, M. Kawamata, A new variable step-size LMS algorithm-based method for improved online secondary path modeling in active noise control systems. IEEE Trans. Audio Speech Lang. Process. 14(2), 720–726 (2006)

    Article  Google Scholar 

  6. M.O. Bin Saeed, A. Zerguin, An Incremental Variable Step-size LMS Algorithm for Adaptive Networks (Circuits Syst. II Expr. Briefs, IEEE Trans, 2019). https://doi.org/10.1109/TCSII.2019.2953199

    Book  Google Scholar 

  7. D. Bismor, Simulations of partial update LMS algorithms in application to active noise control. Proc. Comput. Sci. 80, 1180–1190 (2016)

    Article  Google Scholar 

  8. C. Contan, B.S. Kirei, M.D. Topa, Error-dependent step-size control of adaptive normalized least-mean-square filters used for nonlinear acoustic echo cancellation. SIViP 10(3), 511–518 (2016)

    Article  Google Scholar 

  9. C. Contan, M. Zeller, W. Kellermann, M. Topa, Excitation-dependent step-size control of adaptive Volterra filters for acoustic echo cancellation, in Signal Processing Conference (EUSIPCO), pp. 604–608 (2012)

  10. P.S. Diniz, On data-selective adaptive filtering. IEEE Trans. Signal Process. 66(16), 4239–4252 (2018)

    Article  MathSciNet  Google Scholar 

  11. P. Diniz, Adaptive Filtering Algorithms and Practical Implementation (Springer, Berlin, 2008)

    MATH  Google Scholar 

  12. S.C. Douglas, Analysis and implementation of the Max-NLMS adaptive filter. ASIMOLAR Conf. 1, 6591–6663 (1996)

    Google Scholar 

  13. K. Dogancay, Partial-Update Adaptive Signal Processing: Design Analysis and Implementation (Academic Press, London, 2008)

    Google Scholar 

  14. T. Fan, Y. Lin, A variable step-size strategy based on error function for sparse system identification. Circuits Syst. Signal Process. 36(3), 1301–1310 (2017)

    Article  Google Scholar 

  15. B. Farhang, Variable-step-size LMS algorithm: new developments and experiments. IEE Proc. Vis. Image Signal Process. 141(5), 311–317 (1994)

    Article  Google Scholar 

  16. M. Godavarti, A.O. Hero, Partial update LMS algorithms. IEEE Trans. Signal Process. 53(7), 2382–2399 (2005)

    Article  MathSciNet  Google Scholar 

  17. A. Guérin, G. Faucon, R. Le Bouquin-Jeannès, Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans. Speech Audio Process. 11(6), 672–683 (2003)

    Article  Google Scholar 

  18. S. Haykin, Adaptive Filter Theory (Prentice-Hall, Englewood Cliffs, 1996)

    MATH  Google Scholar 

  19. T. Jingfan, O. Jingzheng, A new variable step-size LMS adaptive filtering algorithm. J. Data Aequ. Process. 12(3), 171–194 (1997)

    Google Scholar 

  20. Z. Jingjing, Variable step-size LMS algorithm. Int. J. Fut. Comput. Commun. 1(4), 389–391 (2012)

    Article  Google Scholar 

  21. S.M. Kuo, H.T. Wu, Nonlinear adaptive bilinear filters for active noise control systems. IEEE Trans. Circuits Syst. I Regul. Pap. 52(3), 617–624 (2005)

    Article  MathSciNet  Google Scholar 

  22. R.H. Kwong, E.W. Johnston, A variable Step-Size LMS algorithm. IEEE Trans. Signal Process. 40(6), 864–872 (1992)

    MATH  Google Scholar 

  23. J.F. Liu, Z.Q. Jiang, X.X. Li, X. Huo, A novel variable step-size LMS adaptive filtering algorithm based on Lorentzian function. Command Control Simul. 31(2), 42–44 (2009)

    Google Scholar 

  24. Sh Liu, Y. Ma, Y. Huang, Sea clutter cancellation for passive radar sensor exploiting multi-channel adaptive filters. IEEE Sens. J. 19(3), 982–995 (2019)

    Article  Google Scholar 

  25. Y. Ma, T. Shan, J. Lu, A multi-channel partial-update algorithm for sea clutter suppression in passive bistatic radar, in IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 252–256 (2018)

  26. T. Ogunfunmi, Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches (Springer, Berlin, 2007)

    Book  Google Scholar 

  27. C. Paleologu, J. Benesty, S. L. Grant, C. Osterwise, Variable step-size NLMS algorithms designed for echo cancellation, in Signals, Systems and Computers 2009 Conference Record of the Forty-Third Asilomar Conference, pp. 633–637 (2009)

  28. I. Pitas, Fast algorithms for running ordering and max/min calculation. IEEE Trans. Circuits Syst. 36(6), 795–804 (1989)

    Article  Google Scholar 

  29. A. Rai, A.K. Kohli, Volterra filtering scheme using generalized variable step-size NLMS algorithm for nonlinear acoustic echo cancellation. Acta Acust. United Acust. 101(4), 821–828 (2015)

    Article  Google Scholar 

  30. A. Rai, A.K. Kohli, Adaptive polynomial filtering using generalized variable step-size least mean pth power (LMP) algorithm. Circuits Syst. Signal Process. 33(12), 3931–3947 (2014)

    Article  Google Scholar 

  31. A.J. Redfern, G.T. Zhou, A root method for Volterra system equalization. IEEE Signal Process. Lett. 5(11), 285–288 (1998)

    Article  Google Scholar 

  32. J.B. Seo, J.H. Kim, T.H. Jung, S.W. Nam, S.W., Nonlinear acoustic echo cancellation using Volterra filtering with a modified VSS-GSPAP algorithm, in 13th International Conference on Electronics Information, and Communication (ICEIC) (2014)

  33. T. Shan, Y. Ma, R. Tao, Sh Liu, Multi-channel NLMS-based sea clutter cancellation in passive bistatic radar. IEICE Electr. Expr. 11(20), 20140872 (2014)

    Article  Google Scholar 

  34. K. Shi, X. Ma, T. Zhou, An efficient acoustic echo cancellation design for systems with long room impulses and nonlinear loudspeakers’. Sig. Process. 89(2), 121–132 (2009)

    Article  Google Scholar 

  35. L. Shi, H. Zhao, H. Zeng, Y. Yu, Variable step-size widely linear complex-valued NLMS algorithm and its performance analysis. Sig. Process. 165(12), 1–6 (2019)

    Google Scholar 

  36. G.L. Sicuranza, A. Carini, Nonlinear multichannel active noise control using partial updates [acoustic noise control], in Acoustics, Speech, and Signal Processing (ICASSP’05), iii-109 (2005)

  37. L. Tan, J. Jiang, Adaptive second-order Volterra filtered-X RLS algorithms with sequential and partial updates for nonlinear active noise control, in Industrial Electronics and Applications (ICIEA), pp. 1625–1630 (2009)

  38. P. Wen, J. Zhang, Variable step-size diffusion normalized sign-error algorithm. Circuits Syst. Signal Process. 37(11), 4993–5004 (2018)

    Article  MathSciNet  Google Scholar 

  39. D. Zhou, V. DeBrunner, Efficient adaptive nonlinear filters for nonlinear active noise control. IEEE Trans. Circuits Syst. I Regul. Pap. 54(3), 669–681 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Mayyas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayyas, K., Afeef, L. A Variable Step-Size Partial-Update Normalized Least Mean Square Algorithm for Second-Order Adaptive Volterra Filters. Circuits Syst Signal Process 39, 6073–6097 (2020). https://doi.org/10.1007/s00034-020-01446-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01446-2

Keywords

Navigation