Skip to main content
Log in

The VLSI Architecture and Implementation of a Low Complexity and Highly Efficient Configurable SVD Processor for MIMO Communication Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design and implementation of a low complexity and highly efficient configurable singular value decomposition (SVD) processor for 2 × 2, 4 × 4, 6 × 6, and 8 × 8 MIMO wireless communication systems. In order to minimize the area complexity while maintaining comparable throughput, novel data-processing sequences are proposed so that costly matrix multipliers are eliminated. Furthermore, data dependencies are greatly mitigated due to the proposed processing sequences. Therefore, a highly optimized pipelined architecture is designed where the resource utilization and hardware efficiency are significantly improved. Moreover, circuit level optimizations are also applied to further enhance the performance of the proposed SVD processor. The proposed SVD architecture has been implemented with 90 nm technology at 500 MHz clock frequency. The post-layout estimations show that the proposed SVD processor achieves a throughput of 1.1 M matrices/s for 8 × 8 MIMO communication systems with the hardware complexity of 192.2 kilo Gate Equivalents. Compared to the state-of-the-art design that supports 2 × 2, 4 × 4, 6 × 6, and 8 × 8 MIMO configurations, the proposed architecture demonstrates a 46% reduction in area complexity and a 22% improvement in hardware efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Chae, A. Forenza, R.W. Heath, M.R. McKay, I.B. Collings, Adaptive MIMO transmission techniques for broadband wireless communication systems [Topics in Wireless Communications]. IEEE Commun. Mag. 48, 112–118 (2012). https://doi.org/10.1109/MCOM.2010.5458371

    Article  Google Scholar 

  2. Y.-L. Chen, C.-Z. Zhan, T.-J. Jheng, A.-Y. Wu, Reconfigurable adaptive singular value decomposition engine design for high-throughput MIMO–OFDM systems. IEEE Trans. Very Large Scale Integr. Syst. 21, 747–760 (2012). https://doi.org/10.1109/TVLSI.2012.2195040

    Article  Google Scholar 

  3. M. Garrido, P. Källström, M. Kumm, O. Gustafsson, CORDIC II: a new improved CORDIC algorithm. IEEE Trans. Circuits Syst. II Express Br. 63, 186–190 (2015). https://doi.org/10.1109/TCSII.2015.2483422

    Article  Google Scholar 

  4. A. Ghosh, A. Maeder, M. Baker, D. Chandramouli, 5G evolution: a view on 5g cellular technology beyond 3GPP release 15. IEEE Access 7, 127639–127651 (2019). https://doi.org/10.1109/ACCESS.2019.2939938

    Article  Google Scholar 

  5. A. Goldsmith, S.A. Jafar, N. Jindal, S. Vishwanath, Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun. 21, 684–702 (2003). https://doi.org/10.1109/JSAC.2003.810294

    Article  MATH  Google Scholar 

  6. D. Guenther, R. Leupers, G. Ascheid, A scalable, multimode SVD precoding ASIC based on the cyclic Jacobi method. IEEE Trans Circuits Syst. I Regul. Pap. 63, 1283–1294 (2016). https://doi.org/10.1109/TCSI.2016.2561904

    Article  MathSciNet  Google Scholar 

  7. H. Huang, L. Xiao, J. Liu, CORDIC-based unified architectures for computation of DCT/IDCT/DST/IDST. Circuits Syst. Signal Process. 33, 799–814 (2014). https://doi.org/10.1007/s00034-013-9661-9

    Article  Google Scholar 

  8. Y.-T. Hwang, K.-T. Chen, C.-K. Wu, A high throughput unified SVD/QRD precoder design for MIMO OFDM systems, in 2015 IEEE International Conference on Digital Signal Processing (DSP), IEEE, 2015, pp. 1148–1151. https://doi.org/10.1109/ICDSP.2015.7252059

  9. D.J. Love, R.W. Heath, V.K. Lau, D. Gesbert, B.D. Rao, M. Andrews, An overview of limited feedback in wireless communication systems. IEEE J. Sel. Areas Commun. 26, 1341–1365 (2008). https://doi.org/10.1109/JSAC.2008.081002

    Article  Google Scholar 

  10. P.K. Meher, J. Valls, T.-B. Juang, K. Sridharan, K. Maharatna, 50 years of CORDIC: algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 1893–1907 (2009). https://doi.org/10.1109/TCSI.2009.2025803

    Article  MathSciNet  Google Scholar 

  11. S. Mopuri, A. Acharyya, Configurable rotation matrix of hyperbolic CORDIC for any logarithm and its inverse computation. Signal Process. Circuits Syst. (2019). https://doi.org/10.1007/s00034-019-01277-w

    Article  Google Scholar 

  12. A.J. Paulraj, D.A. Gore, R.U. Nabar, H. Bolcskei, An overview of MIMO communications-a key to gigabit wireless. Proc. IEEE 92, 198–218 (2004). https://doi.org/10.1109/JPROC.2003.821915

    Article  Google Scholar 

  13. C. Senning, C. Studer, P. Luethi, W. Fichtner, Hardware-efficient steering matrix computation architecture for MIMO communication systems, in 2008 IEEE International Symposium on Circuits and Systems, IEEE, 2008, pp. 304–307. https://doi.org/10.1109/ISCAS.2008.4541415.

  14. R. Shukla, K.C. Ray, Low latency hybrid CORDIC algorithm. IEEE Trans. Comput. 63, 3066–3078 (2013). https://doi.org/10.1109/TC.2013.173

    Article  MathSciNet  MATH  Google Scholar 

  15. G.L. Stuber, J.R. Barry, S.W. Mclaughlin, Y. Li, M.A. Ingram, T.G. Pratt, Broadband MIMO-OFDM wireless communications. Proc. IEEE 92, 271–294 (2004). https://doi.org/10.1109/JPROC.2003.821912

    Article  Google Scholar 

  16. C. Studer, P. Blosch, P. Friedli, A. Burg, Matrix decomposition architecture for MIMO systems: design and implementation trade-offs, in 2007 Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers, IEEE, 2007, pp. 1986–1990. https://doi.org/10.1109/ACSSC.2007.4487584.

  17. B. Tiwari, N. Goel, Implementation of a fast hybrid CORDIC architecture, in 2016 Second International Conference on Computational Intelligence and Communication Technology (CICT), IEEE, 2016, pp. 702–706. https://doi.org/10.1109/CICT.2016.145.

  18. M. Vu, A. Paulraj, MIMO wireless linear precoding. IEEE Signal Process. Mag. 24, 86–105 (2007). https://doi.org/10.1109/MSP.2007.904811

    Article  Google Scholar 

  19. C.-H. Yang, C.-W. Chou, C.-S. Hsu, C.-E. Chen, A systolic array based GTD processor with a parallel algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 1099–1108 (2015). https://doi.org/10.1109/TCSI.2015.2388831

    Article  MathSciNet  Google Scholar 

  20. C.-Z. Zhan, Y.-L. Chen, A.-Y. Wu, Iterative superlinear-convergence SVD beamforming algorithm and VLSI architecture for MIMO-OFDM systems. IEEE Trans. Signal Process. 60, 3264–3277 (2012). https://doi.org/10.1109/TSP.2012.2190405

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-An Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WJ., Lai, YA. & Shen, CA. The VLSI Architecture and Implementation of a Low Complexity and Highly Efficient Configurable SVD Processor for MIMO Communication Systems. Circuits Syst Signal Process 39, 6231–6246 (2020). https://doi.org/10.1007/s00034-020-01458-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01458-y

Keywords

Navigation