Skip to main content
Log in

An Optimization Framework for the Design of Noise Shaping Loop Filters with Improved Stability Properties

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A framework using semidefinite programming is proposed to enable the design of sigma delta modulator loop filters at the transfer function level. Both continuous-time and discrete-time, low-pass and band-pass designs are supported. For performance, we use the recently popularized Generalized Kalman–Yakubovič–Popov (GKYP) lemma to place constraints on the \(\mathcal {H}_\infty \) norm of the noise transfer function (NTF) in the frequency band of interest. We expand the approach to incorporate common stability criteria in the form of \(\mathcal {H}_2\) and \(\ell _1\) norm NTF constraints. Furthering the discussion of stability, we introduce techniques from control systems to improve the robustness of the feedback system over a range of quantizer gains. The performance-stability trade-off is examined using this framework and motivated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The high-pass case of Lemma 3.1 where \(\omega _h = \infty \) (continuous-time) or \(\omega _h = \pi \) (discrete-time) is a special case and not shown here, because only low-pass or band-pass modulators are commonly used. For more information on high-pass GKYP design, see [9].

  2. The Delta Sigma Toolbox command synthesizeNTF(5, 32, 1, 1.5, 0) was used to produce the transfer function used in this comparison.

References

  1. J. Ferguson, S. Vincellette, A. Ganesan, T. Volpe, B. Libert, Theory and practical implementation of a 5th-order sigma-delta A/D Converter. J. Audio Eng. Soc. 39(7/8), 515–528

  2. D. Anastassiou, Error diffusion coding for A/D conversion. IEEE Trans. Circuits Syst. 36(9), 1175–1186 (1989). https://doi.org/10.1109/31.34663

    Article  MathSciNet  Google Scholar 

  3. J. Bu, M. Sznaier, Linear matrix inequality approach to synthesizing low-order suboptimal mixed l1/Hp controllers. Automatica 36(7), 957–963 (2000). https://doi.org/10.1016/S0005-1098(00)00005-4

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Callegari, F. Bizzarri, A. Brambilla, Optimal coefficient quantization in optimal-NTF \(\varDelta \varSigma \) modulators. IEEE Trans. Circuits Syst. II Express Br. 65(5), 542–546 (2018). https://doi.org/10.1109/TCSII.2018.2821368

    Article  Google Scholar 

  5. K.C.H. Chao, S. Nadeem, W.L. Lee, C.G. Sodini, A higher order topology for interpolative modulators for oversampling A/D converters. IEEE Trans. Circuits Syst. 37(3), 309–318 (1990). https://doi.org/10.1109/31.52724

    Article  Google Scholar 

  6. J.L.A. de Melo, N. Pereira, P.V. Leitao, N. Paulino, J. Goes, A systematic design methodology for optimization of sigma–delta modulators based on an evolutionary algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 66(9), 3544–3556 (2019). https://doi.org/10.1109/tcsi.2019.2925292

    Article  Google Scholar 

  7. M.S. Derpich, E.I. Silva, D.E. Quevedo, G.C. Goodwin, On optimal perfect reconstruction feedback quantizers. IEEE Trans. Signal Process. 56(8 II), 3871–3890 (2008). https://doi.org/10.1109/TSP.2008.925577

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox For Use with MATLAB, 1st edn. (The Mathworks Inc, Natick, 1995). https://doi.org/10.1109/CDC.1994.411440

    Book  Google Scholar 

  9. T. Iwasaki, S. Hara, Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Autom. Control 50(1), 41–59 (2005)

    Article  MathSciNet  Google Scholar 

  10. T. Iwasaki, S. Hara, H. Yamauchi, Dynamical system design from a control perspective: finite frequency positive-realness approach. IEEE Trans. Autom. Control 48(8), 1337–1354 (2003). https://doi.org/10.1109/TAC.2003.815013

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Kang, Simulation, and overload and stability analysis of continuous time sigma delta modulator. Ph.D. Thesis, University of Nevada (2014)

  12. J. Kenney, L. Carley, CLANS: a high-level synthesis tool for high resolution data converters, in IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers, pp. 496–499. Pittsburgh (1988). https://doi.org/10.1109/ICCAD.1988.122557

  13. S. Kidambi, Design of noise transfer functions for delta–sigma modulators using the least-pth norm. IEEE Trans. Circuits Syst. II Express Br. 66(4), 707–711 (2019). https://doi.org/10.1109/TCSII.2018.2880925

    Article  Google Scholar 

  14. T.H. Kuo, C.C. Yang, K.D. Chen, W.C. Wang, Design method for high-order sigma delta modulator stabilized by departure angles designed to keep root loci in unit circle. IEEE Trans. Circuits Syst. II Express Br. 53(10), 1083–1087 (2006). https://doi.org/10.1109/TCSII.2006.882219

    Article  Google Scholar 

  15. J. Lasserre, Convergent LMI relaxations for nonconvex quadratic programs, in Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187), vol. 5, no. 2, pp. 5041–5046 (2000). https://doi.org/10.1109/CDC.2001.914738

  16. X. Li, C. Yu, H. Gao, Design of delta–sigma modulators via generalized Kalman–Yakubovich–Popov lemma. Automatica 50(10), 2700–2708 (2014). https://doi.org/10.1016/j.automatica.2014.09.002

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-M. Liu, S.-H. Chien, T.-H. Kuo, Optimal design for delta-sigma modulators with root loci inside unit circle. IEEE Trans. Circuits Syst. II Express Br. 59(2), 83–87 (2012). https://doi.org/10.1109/TCSII.2011.2180096

  18. J. Löfberg, YALMIP: A Toolbox for Modeling and Optimization in MATLAB (2004)

  19. I. Masubuchi, A. Ohara, N. Suda, LMI-based controller synthesis: a unified formulation and solution. Robust Nonlinear Control 8(9), 669–686 (1998)

    Article  MathSciNet  Google Scholar 

  20. M. Nagahara, Y. Yamamoto, Frequency domain min–max optimization of noise-shaping delta–sigma modulators. IEEE Trans. Signal Process. 60(6), 1–12 (2012). https://doi.org/10.1109/TSP.2012.2188522

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Oberoi, A convex optimization approach to the design of multiobjective discrete time systems. Master of Science, Rochester Institute of Technology (2004)

  22. A. Oberoi, J.C. Cockburn, A simplified LMI approach to l1 controller design, in Proceedings of the 2005 American Control Conference, pp. 1788–1792. Portland (2005)

  23. R. Orsi, U. Helmke, J.B. Moore, A Newton-like method for solving rank constrained linear matrix inequalities. Automatica 42(11), 1875–1882 (2006). https://doi.org/10.1016/j.automatica.2006.05.026

    Article  MathSciNet  MATH  Google Scholar 

  24. M.M. Osqui, A. Megretski, Semidefinite programming in analysis and optimization of performance of sigma–delta modulators for low frequencies, in Proceedings of the 2007 American Control Conference, vol. 6, pp. 3582–3587 (2007)

  25. L. Risbo, Sigma delta modulators—stability analysis and optimization. Doctor of philosophy, Technical University of Denmark (1994). http://orbit.dtu.dk/files/5274022/Binder1.pdf

  26. T. Ritoniemi, T. Karema, H. Tenhunen, A fifth order sigma-delta modulator for audio A/D-converter, in 1991 International Conference on Analogue to Digital and Digital to Analogue Conversion, pp. 153–158. IET, Swansea (1991). https://doi.org/10.1109/VLSIC.1991.760064. https://ieeexplore.ieee.org/abstract/document/151991

  27. C.W. Scherer, P. Gahinet, M. Chilali, Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control 42(7), 896–911 (1997). https://doi.org/10.1109/9.599969

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Schreier, An empirical study of high-order single-bit delta–sigma modulators. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 40(8), 461–466 (1993). https://doi.org/10.1109/82.242348

    Article  Google Scholar 

  29. R. Schreier, G.C. Temes, Understanding Delta–Sigma Data Converters, vol. 53 (Wiley, New York, 1997). https://doi.org/10.1109/9780470546772

    Book  Google Scholar 

  30. S.L. Shishkin, Optimization under non-convex quadratic matrix inequality constraints with application to design of optimal sparse controller. IFAC-PapersOnLine 50(1), 10754–10759 (2017). https://doi.org/10.1016/j.ifacol.2017.08.2276

    Article  Google Scholar 

  31. M.R. Tariq, S. Ohno, Unified LMI-based design of \(\varDelta \varSigma \) modulators. EURASIP J. Adv. Signal Process. 2016(1), 29 (2016). https://doi.org/10.1186/s13634-016-0326-2

    Article  Google Scholar 

  32. C.C. Yang, K.D. Chen, W.C. Wang, T.H. Kuo, Transfer function design of stable high-order sigma-delta modulators with root locus inside unit circle, in Proceedings. IEEE Asia-Pacific Conference on ASIC, pp. 5–8 (2002). https://doi.org/10.1109/APASIC.2002.1031518

  33. D. Zhang, P. Shi, L. Yu, Containment control of linear multiagent systems with aperiodic sampling and measurement size reduction. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 5020–5029 (2018). https://doi.org/10.1109/TNNLS.2017.2784365

    Article  MathSciNet  Google Scholar 

  34. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, vol. 40 (Prentice Hall, Englewood Cliffs, 1996). https://doi.org/10.1016/0967-0661(96)83721-X

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by ESS Technology, Inc. through the Mitacs Accelerate program (Grant No. T10238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett C. Hannigan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Derivation of Matrix Inequalities with One Non-Convex Term

Derivation of Matrix Inequalities with One Non-Convex Term

1.1 Derivation of GKYP Inequality with Arbitrary \(\mathcal {D}\)

Theorem A.1

Equation (6) from Sect. 3.1 is equivalent to the following:

$$\begin{aligned} \begin{bmatrix} -\varXi _{11} + aa^{\mathrm{T}} &{}\quad -\varXi _{12} + a &{}\quad -\mathcal {C}_q^{\mathrm{T}} - a\mathcal {D}_{qp}^{\mathrm{T}} \\ -\varXi _{12}^{\mathrm{T}} + a^{\mathrm{T}} &{}\quad -\varXi _{22} + 1 &{}\quad -\mathcal {D}_{qp}^{\mathrm{T}} \\ -\mathcal {C}_q - a^{\mathrm{T}}\mathcal {D}_{qp} &{}\quad -\mathcal {D}_{qp} &{}\quad \gamma _\infty \end{bmatrix} \ge 0 \end{aligned}$$
(28)

where (28) contains just one nonlinear term in variable a, and:

$$\begin{aligned} \begin{bmatrix} \varXi _{11} &{}\quad \varXi _{12} \\ \varXi _{12}^{\mathrm{T}} &{}\quad \varXi _{22} \end{bmatrix}= & {} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} \mathcal {A} &{}\quad \mathcal {B}_p \\ I &{}\quad 0 \end{bmatrix}^{\mathrm{T}} \left( \varPhi \oplus P_\gamma + \varPsi \oplus Q_\gamma \right) \begin{bmatrix} \mathcal {A} &{}\quad \mathcal {B}_p \\ I &{}\quad 0 \end{bmatrix} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix}^{\mathrm{T}} \nonumber \\ P_\gamma= & {} \gamma _\infty ^{-1}P \qquad \qquad Q_\gamma = \gamma _\infty ^{-1}Q. \end{aligned}$$
(29)

Proof

Starting from (6), we follow the procedure mentioned in Sect. 3.4.2 to eliminate non-convex products in the first term of the QMI [16, Th. 1]:

$$\begin{aligned} -\begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} \mathcal {A} &{}\quad \mathcal {B}_p \\ I &{}\quad 0 \end{bmatrix}^{\mathrm{T}} f\left( \varPhi , \varPsi , P, Q\right) \begin{bmatrix} \mathcal {A} &{}\quad \mathcal {B}_p \\ I &{}\quad 0 \end{bmatrix} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix}^{\mathrm{T}} + \ldots \ge 0 \end{aligned}$$
(30)

and introduce the notation \(\varXi _{ij}\) for this linear part:

$$\begin{aligned} -\begin{bmatrix} \varXi _{11} &{}\quad \varXi _{12} \\ \varXi _{12}^{\mathrm{T}} &{}\quad \varXi _{22} \end{bmatrix} + \ldots \ge 0. \end{aligned}$$
(31)

Equation (31) may undergo a congruent transformation by \(\gamma _\infty ^{-\frac{1}{2}}I\) introducing a commutable factor of \(\gamma _\infty ^{-1}\) to every element. For the first summation term, we absorb the factor with redefinition (36) yielding:

$$\begin{aligned} -\begin{bmatrix} \varXi _{11} &{}\quad \varXi _{12} \\ \varXi _{12}^{\mathrm{T}} &{}\quad \varXi _{22} \end{bmatrix} - \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} \mathcal {C}_q &{}\quad \mathcal {D}_{qp} \\ 0 &{}\quad I \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \gamma _\infty ^{-1} &{}\quad 0 \\ 0 &{}\quad -1 \end{bmatrix} \begin{bmatrix} \mathcal {C}_q &{}\quad \mathcal {D}_{qp} \\ 0 &{}\quad I \end{bmatrix} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix}^{\mathrm{T}} \ge 0. \end{aligned}$$
(32)

Multiplying the inner factors in the second term of (32) leads to:

$$\begin{aligned} -\begin{bmatrix} \varXi _{11} &{}\quad \varXi _{12} \\ \varXi _{12}^{\mathrm{T}} &{}\quad \varXi _{22} \end{bmatrix}^{\mathrm{T}} - \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} \gamma _\infty ^{-1}\mathcal {C}_q^{\mathrm{T}}\mathcal {C}_q &{}\quad \gamma _\infty ^{-1}\mathcal {C}_q^{\mathrm{T}}\mathcal {D}_{qp} \\ \gamma _\infty ^{-1}\mathcal {D}_{qp}^{\mathrm{T}}\mathcal {C}_q &{}\quad \gamma _\infty ^{-1}\mathcal {D}_{qp}^{\mathrm{T}}\mathcal {D}_{qp} - 1 \end{bmatrix} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix}^{\mathrm{T}} \ge 0 \end{aligned}$$

which can be expanded into:

$$\begin{aligned}&-\begin{bmatrix} \varXi _{11} &{}\quad \varXi _{12} \\ \varXi _{12}^{\mathrm{T}} &{}\quad \varXi _{22} \end{bmatrix} - \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} I &{}\quad a\mathcal {D}_{qp}^{\mathrm{T}} \\ 0 &{}\quad \mathcal {D}_{qp}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathcal {C}_q^{\mathrm{T}} \\ 1 \end{bmatrix} \gamma _\infty ^{-1} \begin{bmatrix} \mathcal {C}_q^{\mathrm{T}} \\ 1 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} I &{}\quad a\mathcal {D}_{qp}^{\mathrm{T}} \\ 0 &{}\quad \mathcal {D}_{qp}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix}^{\mathrm{T}} \nonumber \\&\quad +\begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} 0 &{}\quad 0 \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix}^{\mathrm{T}} \ge 0. \end{aligned}$$
(33)

The 3 outer factors multiplied with \(\gamma _\infty ^{-1}\) in the middle term of (33) are then combined together and the last summation term is also multiplied through, resulting in the following:

$$\begin{aligned} -\begin{bmatrix} \varXi _{11} &{}\quad \varXi _{12} \\ \varXi _{12}^{\mathrm{T}} &{}\quad \varXi _{22} \end{bmatrix} -\begin{bmatrix} \mathcal {C}_q^{\mathrm{T}} + a\mathcal {D}_{qp}^{\mathrm{T}} \\ \mathcal {D}_{qp}^{\mathrm{T}} \end{bmatrix} \gamma _\infty ^{-1} \begin{bmatrix} \mathcal {C}_q^{\mathrm{T}} + a\mathcal {D}_{qp}^{\mathrm{T}} \\ \mathcal {D}_{qp}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} + \begin{bmatrix} aa^{\mathrm{T}} &{}\quad a \\ a^{\mathrm{T}} &{}\quad 1 \end{bmatrix} \ge 0. \end{aligned}$$
(34)

The last summation term of (34) is then added with the linear part \(\varXi \). Because \(\gamma _\infty> 0 \leftrightarrow \gamma _\infty ^{-1} > 0\), a Schur complement taken around \(\gamma _\infty \) allows (34) to be written as the single matrix inequality (28). \(\square \)

1.2 Derivation of \(\mathcal {H}_2\) and \(\ell _1\) Inequalities

Theorem A.2

Equations (10) from Sect. 3.2 and (17) from Sect. 3.3 are equivalent to the following:

$$\begin{aligned} \begin{bmatrix} -\varXi _{11} + aa^{\mathrm{T}} &{}\quad -\varXi _{12} + a \\ -\varXi _{12}^{\mathrm{T}} + a^{\mathrm{T}} &{}\quad -\varXi _{22} + 1 \end{bmatrix} > 0 \end{aligned}$$
(35)

where (35) contains just one nonlinear term in variable a, and:

$$\begin{aligned} \begin{bmatrix} \varXi _{11} &{}\quad \varXi _{12} \\ \varXi _{12}^{\mathrm{T}} &{}\quad \varXi _{22} \end{bmatrix} = \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix} \begin{bmatrix} \mathcal {A} &{}\quad \mathcal {B}_p \\ I &{}\quad 0 \end{bmatrix}^{\mathrm{T}} f\left( \varPhi , P_\gamma , \alpha \right) \begin{bmatrix} \mathcal {A} &{}\quad \mathcal {B}_p \\ I &{}\quad 0 \end{bmatrix} \begin{bmatrix} I &{}\quad a \\ 0 &{}\quad 1 \end{bmatrix}^{\mathrm{T}} \end{aligned}$$
$$\begin{aligned} f\left( \varPhi , P_\gamma , \alpha \right)= & {} {\left\{ \begin{array}{ll} \varPhi \oplus P_\gamma &{}\quad \text {for the }\mathcal {H}_2\text { case} \\ \left( \varPhi + \begin{bmatrix} 0 &{}\quad 0 \\ 0 &{}\quad \alpha \end{bmatrix}\right) \oplus P_\gamma&\quad \text {for the }\ell _1\text { case} \end{array}\right. } \end{aligned}$$
(36)
$$\begin{aligned} P_\gamma= & {} \gamma _\infty ^{-1}P. \end{aligned}$$
(37)

Proof

Starting from either (10) or (17), we follow the procedure mentioned in Sect. 3.4.3 to eliminate non-convex products in the first term of the QMI independent of \(f\left( \varPhi , P_\gamma , \alpha \right) \). The second summation term is the same in both QMIs and simplifies as shown in (24). Combining these results in the matrix inequality (35). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannigan, B.C., Petersen, C.L., Mallinson, A.M. et al. An Optimization Framework for the Design of Noise Shaping Loop Filters with Improved Stability Properties. Circuits Syst Signal Process 39, 6276–6298 (2020). https://doi.org/10.1007/s00034-020-01460-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01460-4

Keywords

Navigation