Skip to main content
Log in

A Nonparametric Approach for Multicomponent AM–FM Signal Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel method is presented to analyze the amplitude modulated and frequency modulated (AM–FM) multicomponent signals using a combination of the variational mode decomposition (VMD) and the discrete energy separation algorithm (DESA). In the presented method, firstly, a multicomponent signal is decomposed using VMD method applied in an iterative way. In order to separate the monocomponent signals from multicomponent signal, a suitable convergence criterion is developed based on the values of estimated center frequencies (\(\overline{\text {CF}}\)) and standard deviations (\(\sigma _{\text {CF}}\)) of the decomposed components. Further, the estimation of amplitude envelope and the instantaneous frequency functions of monocomponent AM–FM signals has been carried out by employing DESA. Moreover, the proposed method is also applied on the synthetic AM–FM signal and speech signals to evaluate its performance. Furthermore, its performance is also compared with the Fourier–Bessel series expansion-based DESA, empirical wavelet transform-based DESA, and iterative eigenvalue decomposition-based DESA methods. The performance of the proposed method is compared with the other methods in terms of mean square error between actual and estimated amplitude envelopes (\({\text {MSE}_{\text {AE}}}\)), mean square error between actual and estimated instantaneous frequencies (\({\text {MSE}_{\text {IF}}}\)) for synthetic signal. The COSH distance measure is used as a performance measure for speech signals. It is found that the proposed method gives better results in terms of performance measures in several cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A.A. Abdoos, P.K. Mianaei, M.R. Ghadikolaei, Combined VMD-SVM based feature selection method for classification of power quality events. Appl. Soft Comput. 38, 637–646 (2016)

    Google Scholar 

  2. V. Bajaj, R.B. Pachori, Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16(6), 1135–1142 (2012)

    Google Scholar 

  3. A. Bouchikhi, A.O. Boudraa, Multicomponent AM–FM signals analysis based on EMD-B-splines ESA. Signal Process. 92(9), 2214–2228 (2012)

    Google Scholar 

  4. R. Bracewell, The Fourier Transform and Its Applications, vol. 5 (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  5. J.C. Cexus, A.O. Boudraa, in Nonstationary Signals Analysis by Teager-Huang transform (THT), 14th European Signal Processing Conference, pp. 1–5. IEEE (2006)

  6. C.I. Christodoulou, P.A. Kaplanis, V. Murray, M.S. Pattichis, C.S. Pattichis, T. Kyriakides, Multi-scale AM–FM analysis for the classification of surface electromyographic signals. Biomed. Signal Process. Control 7(3), 265–269 (2012)

    Google Scholar 

  7. L. Cohen, Time-Frequency Analysis, vol. 778 (Prentice Hall PTR, Englewood Cliffs, 1995)

    Google Scholar 

  8. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)

    MathSciNet  MATH  Google Scholar 

  9. C. Flores Vega, V. Murray, in Multiscale AM–FM Methods on EEG Signals for Motor Task Classification, International Conference of the Engineering in Medicine and Biology Society, pp. 6210–6214, IEEE (2015)

  10. A. Francos, M. Porat, Analysis and synthesis of multicomponent signals using positive time-frequency distributions. IEEE Trans. Signal Process. 47(2), 493–504 (1999)

    Google Scholar 

  11. B. Friedlander, J.M. Francos, Estimation of amplitude and phase parameters of multicomponent signals. IEEE Trans. Signal Process. 43(4), 917–926 (1995)

    Google Scholar 

  12. S. Gazor, R.R. Far, Adaptive maximum windowed likelihood multicomponent AM–FM signal decomposition. IEEE Trans. Audio Speech Lang. Process. 14(2), 479–491 (2006)

    Google Scholar 

  13. J. Gilles, Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)

    MathSciNet  MATH  Google Scholar 

  14. J. Gilles, K. Heal, A parameterless scale-space approach to find meaningful modes in histograms—application to image and spectrum segmentation. Int. J. Wavelets Multiresolution Inf. Process. 12(06), 1450,044 (2014)

    MathSciNet  MATH  Google Scholar 

  15. B.G. Gowri, S.S. Kumar, N. Mohan, K. Soman, in A VMD Based Approach for Speech Enhancement, Advances in Signal Processing and Intelligent Recognition Systems (Springer, 2016), pp. 309–321

  16. A.H. Gray Jr., J.D. Markel, Distance measures for speech processing. IEEE Trans. Acoust. Speech Signal Process. 24(5), 380–391 (1976)

    Google Scholar 

  17. H. Hassani, Singular spectrum analysis: methodology and comparison. J. Data Sci. 5, 239–257 (2007)

    Google Scholar 

  18. J.P. Havlicek, D.S. Harding, A.C. Bovik, The multicomponent AM–FM image representation. IEEE Trans. Image Process. 5(6), 1094–1100 (1996)

    Google Scholar 

  19. M.R. Hestenes, Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969)

    MathSciNet  MATH  Google Scholar 

  20. A.S. Hood, R.B. Pachori, V.K. Reddy, P. Sircar, Parametric representation of speech employing multi-component AFM signal model. Int. J. Speech Technol. 18(3), 287–303 (2015)

    Google Scholar 

  21. http://www.math.ucla.edu/zosso/code.html (2014). Accessed 20 Dec 2013

  22. http://www-rohan.sdsu.edu/~jegilles/ewt.html (2014). Accessed 1 Dec 2016

  23. X. Hu, S. Peng, W.L. Hwang, Multicomponent AM–FM signal separation and demodulation with null space pursuit. Signal Image Video Process. 7(6), 1093–1102 (2013)

    Google Scholar 

  24. X. Hu, S. Peng, W.L. Hwang, Adaptive integral operators for signal separation. IEEE Signal Process. Lett. 22(9), 1383–1387 (2015)

    Google Scholar 

  25. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, in The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis, , Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454 (The Royal Society, 1998), pp. 903–995

  26. P. Jain, R.B. Pachori, Event-based method for instantaneous fundamental frequency estimation from voiced speech based on eigenvalue decomposition of the Hankel matrix. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1467–1482 (2014)

    Google Scholar 

  27. P. Jain, R.B. Pachori, An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Frankl. Inst. 352(10), 4017–4044 (2015)

    MATH  Google Scholar 

  28. X. Jiang, S. Li, C. Cheng, A novel method for adaptive multi-resonance bands detection VMD-based and using MTEO to enhance rolling element bearing fault diagnosis. Shock Vib. 2016, 1–20 (2016)

    Google Scholar 

  29. J.F. Kaiser, in On a Simple Algorithm to Calculate the ‘energy’ of a Signal. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 381–384 (1990)

  30. J. Kominek, A.W. Black, in The CMU Arctic Speech Databases. Fifth ISCA Workshop on Speech Synthesis (2004)

  31. S. Lahmiri, Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc. Technol. Lett. 1(3), 104 (2014)

    Google Scholar 

  32. Z. Li, Y. Jiang, X. Wang, Z. Peng, Multi-mode separation and nonlinear feature extraction of hybrid gear failures in coal cutters using adaptive nonstationary vibration analysis. Nonlinear Dyn. 84, 1–16 (2015)

    Google Scholar 

  33. Y. Liu, G. Yang, M. Li, H. Yin, Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Process. 125, 349–364 (2016)

    Google Scholar 

  34. C.P. Loizou, V. Murray, M.S. Pattichis, I. Seimenis, M. Pantziaris, C.S. Pattichis, Multiscale amplitude-modulation frequency-modulation (AM–FM) texture analysis of multiple sclerosis in brain MRI images. IEEE Trans. Inf. Technol. Biomed. 15(1), 119–129 (2011)

    Google Scholar 

  35. R. Mahmoudvand, M. Zokaei, On the singular values of the Hankel matrix with application in singular spectrum analysis. Chil. J. Stat. 3(1), 43–56 (2012)

    MathSciNet  MATH  Google Scholar 

  36. P. Maragos, J.F. Kaiser, T.F. Quatieri, Energy separation in signal modulations with application to speech analysis. IEEE Trans. Signal Process. 41(10), 3024–3051 (1993)

    MATH  Google Scholar 

  37. S. Mukhopadhyay, P. Sircar, Parametric modelling of non-stationary signals: a unified approach. Signal Process. 60(2), 135–152 (1997)

    MATH  Google Scholar 

  38. V. Murray, M.S. Pattichis, E.S. Barriga, P. Soliz, Recent multiscale AM–FM methods in emerging applications in medical imaging. EURASIP J. Adv. Signal Process. 2012(1), 1–14 (2012)

    Google Scholar 

  39. N. Nechikkat, V. Sowmya, K. Soman, in Variational Mode Feature-based Hyperspectral Image Classification. Proceedings of the Second International Conference on Computer and Communication Technologies. (Springer, 2016), pp. 365–373

  40. J.C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, P. Bunel, Image analysis by bidimensional empirical mode decomposition. Image Vis. Comput. 21(12), 1019–1026 (2003)

    MATH  Google Scholar 

  41. R.B. Pachori, P. Sircar, Analysis of multicomponent AM–FM signals using FB-DESA method. Digit. Signal Process. 20(1), 42–62 (2010)

    Google Scholar 

  42. Y. Pantazis, O. Rosec, Y. Stylianou, Adaptive AM–FM signal decomposition with application to speech analysis. IEEE Trans. Audio Speech Lang. Process. 19(2), 290–300 (2011)

    Google Scholar 

  43. M. Patichis, H. Petropoulos, W.M. Brooks, in MRI Brain Image Segmentation Using an AM–FM Model, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (IEEE, 2000), pp. 906–910

  44. S. Peng, W.L. Hwang, Null space pursuit: an operator-based approach to adaptive signal separation. IEEE Trans. Signal Process. 58(5), 2475–2483 (2010)

    MathSciNet  MATH  Google Scholar 

  45. A. Potamianos, P. Maragos, A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Process. 37(1), 95–120 (1994)

    MATH  Google Scholar 

  46. A. Potamianos, P. Maragos, Speech analysis and synthesis using an AM–FM modulation model. Speech Commun. 28(3), 195–209 (1999)

    Google Scholar 

  47. T. Qian, L. Zhang, H. Li, Mono-components vs IMFs in signal decomposition. Int. J. Wavelets Multiresolution Inf. Process. 6(03), 353–374 (2008)

    MathSciNet  MATH  Google Scholar 

  48. B. Santhanam, P. Maragos, Multicomponent AM–FM demodulation via periodicity-based algebraic separation and energy-based demodulation. IEEE Trans. Commun. 48(3), 473–490 (2000)

    Google Scholar 

  49. R.R. Sharma, A. Kumar, R.B. Pachori, U.R. Acharya, Accurate automated detection of congestive heart failure using eigenvalue decomposition based features extracted from hrv signals. Biocybern. Biomed. Eng. 39(2), 312–327 (2019)

    Google Scholar 

  50. R.R. Sharma, M. Kumar, R.B. Pachori, Joint time-frequency domain-based cad disease sensing system using ecg signals. IEEE Sens. J. 19(10), 3912–3920 (2019)

    Google Scholar 

  51. R.R. Sharma, M. Kumar, R.B. Pachori, in Classification of EMG Signals Using Eigenvalue Decomposition-Based Time-frequency Representation, Biomedical and Clinical Engineering for Healthcare Advancement (IGI Global, 2020), pp. 96–118

  52. R.R. Sharma, R.B. Pachori, Time-frequency representation using ievdhm-ht with application to classification of epileptic eeg signals. IET Sci. Meas. Technol. 12(1), 72–82 (2017)

    Google Scholar 

  53. R.R. Sharma, R.B. Pachori, Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed. Signal Process. Control 45, 33–49 (2018)

    Google Scholar 

  54. R.R. Sharma, R.B. Pachori, Eigenvalue decomposition of hankel matrix-based time-frequency representation for complex signals. Circuits Syst. Signal Process. 37(8), 3313–3329 (2018)

    MathSciNet  MATH  Google Scholar 

  55. R.R. Sharma, R.B. Pachori, Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner–Ville distribution. Circuits Syst. Signal Process. 37(8), 3330–3350 (2018)

    MathSciNet  MATH  Google Scholar 

  56. T. Siddharth, R.K. Tripathy, R.B. Pachori, Discrimination of focal and non-focal seizures from EEG signals using sliding mode singular spectrum analysis. IEEE Sens. J. 19, 12286–12296 (2019)

    Google Scholar 

  57. P. Sircar, S. Sharma, Complex FM signal model for non-stationary signals. Signal Process. 57(3), 283–304 (1997)

    MATH  Google Scholar 

  58. P. Sircar, M.S. Syali, Complex AM signal model for non-stationary signals. Signal Process. 53(1), 35–45 (1996)

    MATH  Google Scholar 

  59. K. Soman, P. Poornachandran, S. Athira, K. Harikumar, Recursive variational mode decomposition algorithm for real time power signal decomposition. Procedia Technol. 21, 540–546 (2015)

    Google Scholar 

  60. P. Stoica, R.L. Moses, Introduction to Spectral Analysis, vol. 1 (Prentice Hall, Upper Saddle River, 1997)

    MATH  Google Scholar 

  61. A. Upadhyay, R. Pachori, Speech enhancement based on memd-vmd method. Electron. Lett. 53(7), 502–504 (2017)

    Google Scholar 

  62. A. Upadhyay, R.B. Pachori, in A New Method for Determination of Instantaneous Pitch Frequency from Speech Signals, IEEE Signal Processing and Signal Processing Education Workshop, pp. 325–330 (2015)

  63. A. Upadhyay, R.B. Pachori, Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition. J. Frankl. Inst. 352(7), 2679–2707 (2015)

    MATH  Google Scholar 

  64. A. Upadhyay, M. Sharma, R.B. Pachori, Determination of instantaneous fundamental frequency of speech signals using variational mode decomposition. Comput. Electr. Eng. 62, 630–647 (2017)

    Google Scholar 

  65. A. Viswanath, K.J. Jose, N. Krishnan, S.S. Kumar, K. Soman, Spike detection of disturbed power signal using VMD. Procedia Comput. Sci. 46, 1087–1094 (2015)

    Google Scholar 

  66. Y. Wang, F. Liu, Z. Jiang, S. He, Q. Mo, Complex variational mode decomposition for signal processing applications. Mech. Syst. Signal Process. 86, 75–85 (2017)

    Google Scholar 

  67. Y. Wang, R. Markert, J. Xiang, W. Zheng, Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 60, 243–251 (2015)

    Google Scholar 

  68. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Google Scholar 

  69. Y.J. Xue, J.X. Cao, D.X. Wang, H.K. Du, Y. Yao, Application of the variational-mode decomposition for seismic time-frequency analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(8), 3821–3831 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Upadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A., Sharma, M., Pachori, R.B. et al. A Nonparametric Approach for Multicomponent AM–FM Signal Analysis. Circuits Syst Signal Process 39, 6316–6357 (2020). https://doi.org/10.1007/s00034-020-01487-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01487-7

Keywords

Navigation