Skip to main content
Log in

Ground states of bi-harmonic equations with critical exponential growth involving constant and trapping potentials

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we first give a necessary and sufficient condition for the boundedness and the compactness of a class of nonlinear functionals in \(H^{2}\left( {\mathbb {R}}^{4}\right) \) which are of their independent interests. (See Theorems 2.1 and 2.2.) Using this result and the principle of symmetric criticality, we can present a relationship between the existence of the nontrivial solutions to the semilinear bi-harmonic equation of the form

$$\begin{aligned} (-\Delta )^{2}u+\gamma u=f(u)\ \text {in}\ {\mathbb {R}}^{4} \end{aligned}$$

and the range of \(\gamma \in {\mathbb {R}}^{+}\), where \(f\left( s\right) \) is the general nonlinear term having the critical exponential growth at infinity. (See Theorem 2.7.) Though the existence of the nontrivial solutions for the bi-harmonic equation with the critical exponential growth has been studied in the literature, it seems that nothing is known so far about the existence of the ground-state solutions for this class of equations involving the trapping potential introduced by Rabinowitz (Z Angew Math Phys 43:27–42, 1992). Since the trapping potential is not necessarily symmetric, classical radial method cannot be applied to solve this problem. In order to overcome this difficulty, we first establish the existence of the ground-state solutions for the equation

$$\begin{aligned} (-\Delta )^{2}u+V(x)u=\lambda s\exp (2|s|^{2}))\ \text {in}\ {\mathbb {R}}^{4}, \end{aligned}$$
(0.1)

when V(x) is a positive constant using the Fourier rearrangement and the Pohozaev identity. Then we will explore the relationship between the Nehari manifold and the corresponding limiting Nehari manifold to derive the existence of the ground state solutions for the Eq. (2.5) when V(x) is the Rabinowitz type trapping potential, namely it satisfies

$$\begin{aligned} 0<\inf _{x \in {\mathbb {R}}^{4}} V(x)<\sup _{x \in {\mathbb {R}}^{4}} V(x)=\lim _{|x| \rightarrow +\infty } V(x). \end{aligned}$$

(See Theorem 2.8.) The same result and proof applies to the harmonic equation with the critical exponential growth involving the Rabinowitz type trapping potential in \({\mathbb {R}}^2\). (See Theorem 2.9.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \( {\mathbb{R}} ^{N}\) and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (2000)

    MATH  Google Scholar 

  2. Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. (2) 128, 385–398 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Adimurthi, A.: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the \(n\)-Laplacian. Ann. Sci. Norm. Sup. Pisa XVII, 393–413 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Atkinson, F.V., Peletier, L.A.: Ground states and Dirichlet problems for\(-\Delta u=f\left( u\right) \) in \(R^2\). Arch. Ration. Mech. Anal. 96, 147–165 (1986)

    Google Scholar 

  5. Atkinson, F.V., Peletier, L.A.: Ground states of \(-\Delta u=f\left( u\right) \) and the Emden–Fowler equation. Arch. Ration. Mech. Anal. 93, 103–127 (1986)

    Google Scholar 

  6. Alves, C., Souto, M., Montenegro, M.: Existence of a ground state solution for a nonlinear scalar field equation with critical growth. Calc. Var. Partial Differ. Equ. 43, 537–554 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Alves, C., Figueiredo, G.: On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \( {\mathbb{R}} ^{2}\). J. Differ. Equ. 246, 1288–1311 (2009)

    MATH  Google Scholar 

  8. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    MathSciNet  MATH  Google Scholar 

  9. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrodinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \(R^n\). Progress in Mathematics, vol. 240. Birkhser, Basel (2006)

    MATH  Google Scholar 

  11. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonliear Schrodinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253–271 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Bao, J., Lam, N., Lu, G.: Polyharmonic equations with critical exponential growth in the whole space \( {\mathbb{R}} ^{n}\). Discrete Contin. Dyn. Syst. 36, 577–600 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic problems involving critical Sovolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    MATH  Google Scholar 

  14. Chen, L., Li, J., Lu, G., Zhang, C.: Sharpened Adams inequality and ground state solutions to the bi-Laplacian equation in \({\mathbb{R}}^4\). Adv. Nonlinear Stud. 18(3), 429–452 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Chen, L., Lu, G., Zhang, C.: Sharp weighted Trudinger–Moser-Adams inequalities on the whole space and the existence of their extremals. Calc. Var. Partial Differ. Equ. 58(4), 58–132 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Chen, L., Lu, G., Zhu, M.: Critical Trudinger–Moser inequality involving degenerate potential and nonlinear Schrödinger equations. Preprint

  17. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \({\mathbb{R}}^{2}\) with nonlinearities in the critical growth range. Calc. Var. 3, 139–153 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Ding, W., Ni, W.: On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Ration. Mech. Anal. 91(4), 283–308 (1986)

    MathSciNet  MATH  Google Scholar 

  19. do Ó, J.M.: N-Laplacian equations in \({\mathbb{R}}^n\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Trudinger–Moser inequality on the whole plane with the exact growth condition. J. Eur. Math. Soc. 17, 819–835 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schroinger equations. Adv. Differ. Equ. 5(7–9), 899–928 (2000)

    MATH  Google Scholar 

  22. Kavian, O.: Introduction à la Théorie des Points Critiques et Applications aux Problèmes elliptiques, Mathématiques et Applications, vol. 13. Springer, Berlin (1993). MR1276944 (95e:58036)

  23. Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–Nirenberg inequality. Indiana Univ. Math. J. 55(6), 1951–1974 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Lam, N., Lu, G.: Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth. Discrete Contin. Dyn. Syst. 32, 2187–2205 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of \(n\)-Laplacian type with critical exponential growth in \({\mathbb{R}}^{n}\). J. Funct. Anal. 262, 1132–1165 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255, 298–325 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Lam, N., Lu, G.: Sharp Moser–Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231, 3259–3287 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Lam, N., Lu, G.: Sharp Adams type inequalities in Sobolev spaces \(W^{m, \frac{n}{m}}({\mathbb{R}}^n)\) for arbitrary integer \(m\). J. Differ. Equ. 253, 1143–1171 (2012)

    MATH  Google Scholar 

  29. Lam, N., Lu, G., Tang, H.: Sharp subcritical Moser–Trudinger inequalities on Heisenberg groups and subelliptic PDEs. Nonlinear Anal. 95, 77–92 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger–Moser–Adams inequalities. Rev. Mat. Iberoam. 33, 1219–1246 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Lam, N., Lu, G., Zhang, L.: Sharp singular Trudinger–Moser inequalities under different norms. Adv. Nonlinear Stud. 19(2), 2019–2042 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Lam, N., Lu, G., Zhang, L.: Existence and nonexistence of extremal functions for sharp Trudinger–Moser inequalities. Adv. Math. 352, 1253–1298 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Lenzmann, E., Sok, J.: A sharp rearrangement principle in fourier space and symmetry results for PDEs with arbitrary order. arxiv:1805.06294v1

  34. Li, J., Lu, G., Yang, Q.: Fourier analysis and optimal Hardy–Adams inequalities on hyperbolic spaces of any even dimension. Adv. Math. 333, 350–385 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Li, J., Lu, G., Yang, Q.: Sharp Adams and Hardy–Adams inequalities of any fractional order on hyperbolic spaces of all dimensions. Trans. Am. Math. Soc. 373(5), 3483–3513 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Li, J., Lu, G., Zhu, M.: Concentration-compactness principle for Trudinger–Moser inequalities on Heisenberg groups and existence of ground state solutions. Calc. Var. Partial Differ. Equ. 57(3), 84 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Li, Y.X., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \( {\mathbb{R}} ^{n}\). Indiana Univ. Math. J. 57, 451–480 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 and 2. Ann. Inst. Henri. Poincaré Anal. Non linéaire 1, 109–145 (1984)

    MathSciNet  MATH  Google Scholar 

  39. Lu, G., Tang, H.: Sharp Moser–Trudinger inequalities on hyperbolic spaces with exact growth condition. J. Geom. Anal. 26, 837–857 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Lu, G., Tang, H., Zhu, M.: Best constants for Adams’ inequalities with the exact growth condition in \( {\mathbb{R}} ^{n}\). Adv. Nonlinear Stud. 15(4), 763–788 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Lu, G., Wei, J.: On nonlinear Schrödinger equations with totally degenerate potentials. C. R. Acad. Sci. Paris S. I Math 326(6), 691–696 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Lu, G., Yang, Q.: Green’s functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy-Sobolev-Maz’ya inequalities on half spaces. arXiv:1903.10365

  43. Lu, G., Yang, Q.: Sharp Hardy–Adams inequalities for bi-Laplacian on hyperbolic space of dimension four. Adv. Math. 319, 567–598 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Lu, G., Yang, Q.: Paneitz operators on hyperbolic spaces and high order Hardy-Sobolev-Maz’ya inequalities on half spaces. Amer. J. Math. 141(6), 1777–1816 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Masmoudi, N., Sani, F.: Adams’ inequality with the exact growth condition in \( {\mathbb{R}} ^{4}\). Commun. Pure Appl. Math. 67, 1307–1335 (2014)

    MATH  Google Scholar 

  46. Masmoudi, N., Sani, F.: Trudinger–Moser inequalities with the exact growth condition in \({\mathbb{R}}^{4}\) and applications. Commun. Partial Differ. Equ. 40, 1408–1440 (2015)

    MATH  Google Scholar 

  47. Masmoudi, N., Sani, F.: Higher order Adams’ inequality with the exact growth condition. Commun. Contemp. Math. (2018). https://doi.org/10.1142/S0219199717500729

    Article  MathSciNet  MATH  Google Scholar 

  48. Moser, J.: Sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    MathSciNet  MATH  Google Scholar 

  49. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

  51. Rabinowitz, P.: On a class of nonlinear Schröinger equations. Z. Angew. Math. Phys. 43, 27–42 (1992)

    Google Scholar 

  52. Rabinowitz, P.: Critical point theory and applications to differential equations: a survey. In: Brown, R.F. (ed.) Topological Nonlinear Analysis. Progress Nonlinear Differential Equations Application, vol. 15, pp. 464–513. Birkhäser, Boston (1995)

    Google Scholar 

  53. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \( {\mathbb{R}} ^{2}\). J. Funct. Anal. 219, 340–367 (2004)

    MATH  Google Scholar 

  54. Ruf, B., Sani, F.: Ground states for elliptic equations in \( {\mathbb{R}} ^{2}\) with exponential critical growth. In: Magnanini, R., Sakaguchi, S., Alvino, A. (eds.) Geometric Properties for Parabolic and Elliptic PDE’s. Springer INdAM Series, vol. 2, pp. 251–267. Springer, New York (2013)

    MATH  Google Scholar 

  55. Ruf, B., Sani, F.: Sharp Adams-type inequalities in \({\mathbb{R}} ^{n}\). Trans. Am. Math. Soc. 365, 645–670 (2013)

    MATH  Google Scholar 

  56. Sani, F.: A biharmonic equation in \( {\mathbb{R}} ^{4}\) involving nonlinearities with critical exponential growth. Commun. Pure Appl. Anal. 12, 405–428 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Trudinger, N.S.: On embeddings in to Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  58. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153(2), 229–244 (1993)

    MATH  Google Scholar 

  59. Yang, Y.: Existence of positive solutions to quasilinear equations with exponential growth in the whole Euclidean space. J. Funct. Anal. 262, 1679–1704 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Zhao, L., Chang, Y.: Minimax level estimate for a singular quasilinear polyharmonic equation in \( {\mathbb{R}} ^{2m}\). J. Differ. Equ. 254, 2434–2464 (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referee for her/his careful reading and useful comments which have improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Lu.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Lu Chen was partly supported by the National Natural Science Foundation of China (No. 11901031) and a grant from Beijing Institute of Technology (No. 3170012221903). The Maochun Zhu was supported by Natural Science Foundation of China (11601190 and 12071185), Natural Science Foundation of Jiangsu Province (BK20160483) and Jiangsu University Foundation Grant (16JDG043).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Lu, G. & Zhu, M. Ground states of bi-harmonic equations with critical exponential growth involving constant and trapping potentials. Calc. Var. 59, 185 (2020). https://doi.org/10.1007/s00526-020-01831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01831-4

Mathematics Subject Classification

Navigation