Skip to main content

Advertisement

Log in

Electrodeposited thick coatings of V2O5 on Ni foam as binder free electrodes for supercapacitors

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Thick coatings, up to few microns, of the active material are necessary for the preparation and commercialization of electrode materials for energy storage applications, as thin layers of active material drains out of the current collector after a few cycles. Moreover, larger mass loading of the active material is required for high energy density pseudocapacitor applications as more active material involves more redox reactions to store large amount of charge. This study reports thick electrodeposits of vanadium pentoxide (V2O5) on nickel foam substrate and its evaluation as supercapacitor electrode material. Vanadium pentoxide with thickness of 3–5 μm were successfully electrodeposited (potentiostatically and galvanostatically) on metallic nickel foam to obtain potentiostatically electrodeposited V2O5 on nickel foam (PE-V2O5Ni) and galvanostatically electrodeposited V2O5 on nickel foam (GE-V2O5Ni), respectively. The PE-V2O5Ni electrode with layered morphologies exhibits more charge storage and discharge capability than spherically dense morphologies of GE-V2O5Ni electrodes. The synthesized electrode materials were structurally, morphologically and chemically characterized through X-ray diffractometer, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The PE-V2O5Ni and GE-V2O5Ni exhibited gravimetric capacitance of 657 and 421 F g−1 with tremendous stability in the polypropylene carbonate electrolyte.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Sathiya M, Prakash A, Ramesha K, Tarascon J M and Shukla A K 2011 J. Am. Chem. Soc. 133 16291

    CAS  Google Scholar 

  2. Simon P and Gogotsi Y 2008 Nat. Mater. 7 845

    CAS  Google Scholar 

  3. Chen Z, Augustyn V, Wen J, Zhang Y, Shen M et al 2011 Adv. Mater. 23 791

    CAS  Google Scholar 

  4. Yang L, Cheng S, Ding Y, Zhu X, Wang L and Liu M 2011 Nano Lett. 12 321

    Google Scholar 

  5. Omar S, Numan A, Duraisamy N, Ramly M M and Ramesh S 2017 Electrochim. Acta 227 41

    CAS  Google Scholar 

  6. Trasatti S and Kurzweil P 1994 Platin. Met. Rev. 38 46

    CAS  Google Scholar 

  7. Xiao J, Wan L, Yang S, Xiao F and Shuai W 2014 Nano Lett. 14 831

    CAS  Google Scholar 

  8. Wang H, Yi H, Chen X et al 2014 J. Mater. Chem. A 2 1165

  9. Li Y, Xie H, Wang J et al 2011 Mater. Lett. 65 403

    CAS  Google Scholar 

  10. Kuo L and Wu L 2003 Electrochem. Solid-State Lett. 6 85

    Google Scholar 

  11. Wu L, Wang Y, Han Y, Wu S et al 2003 J. Power Sources 113 173

    CAS  Google Scholar 

  12. Liu C, Pell G et al 1999 Electrochim. Acta 44 2829

    CAS  Google Scholar 

  13. Li N, Chen Z, Ren W, Li F et al 2012 Proc. Natl. Acad. Sci. USA 109 17360

    CAS  Google Scholar 

  14. Liu L, Yao T, Tan X, Li Q, Wang Z et al 2012 Small 8 3752

    CAS  Google Scholar 

  15. Cao A M, Hu J S, Liang H P et al 2005 Angew. Chemie Int. Ed. 44 4391

    CAS  Google Scholar 

  16. Nagaraju H, Wang Q, Beaujuge P et al 2014 J. Mater. Chem. A 2 17146

    CAS  Google Scholar 

  17. Sahu V, Goel S, Tomar A K, Singh G et al 2017 Electrochim. Acta 230 255

    CAS  Google Scholar 

  18. Vernardou D, Pemble M E, Sheel D W et al 2006 Chem. Vap. Depos. 12 263

    CAS  Google Scholar 

  19. Vernardou D, Spanakis E, Kenanakis G, Koudoumas E et al 2010 Mater. Chem. Phys. 124 319

    CAS  Google Scholar 

  20. El Mandouh Z S and Selim M S 2000 Thin Solid Films 371 259

    Google Scholar 

  21. Lee J W and Pyun S I 2003 J. Power Sources 119 760

    Google Scholar 

  22. Hu C C, Huang C M et al 2008 J. Power Sources 185 1594

    CAS  Google Scholar 

  23. Lee J K, Kim G P, Song I K et al 2009 Electrochem. Commun. 11 1571

    CAS  Google Scholar 

  24. Li J M, Chang K H and Hu C C 2010 Electrochem. Commun. 12 1800

    CAS  Google Scholar 

  25. Ghosh A, Ra E J, Jin M, Jeong H K et al 2011 Adv. Funct. Mater. 21 2541

    CAS  Google Scholar 

  26. Ye S, Feng J and Wu P 2013 ACS Appl. Mater. Interfaces 5 7122

    CAS  Google Scholar 

  27. Gujar T P, Kim W Y, Puspitasari I, Jung K D and Joo O S 2007 Int. J. Electrochem. Sci. 2 666

    CAS  Google Scholar 

  28. Liang K, Tang X, Hu W, Yang Y et al 2016 ChemElectroChem 3 704

    CAS  Google Scholar 

  29. Huang C M, Hu C C, Chang K H, Li J M and Li Y F 2009 J. Electrochem. Soc. 156 667

    Google Scholar 

  30. Bai M H, Liu T Y, Luan F, Li Y et al 2014 J. Mater. Chem. A 2 10882

    CAS  Google Scholar 

  31. Scherer M R, Li L, Cunha P M et al 2012 Adv. Mater. 24 1217

    CAS  Google Scholar 

  32. Ingole R S and Lokhande B J 2017 J. Mater. Sci.: Mater. Electron. 28 10951

    CAS  Google Scholar 

  33. Vernardou D, Spanakis E, Katsarakis N, et al 2014 Adv. Mater. Lett. 5 569

    CAS  Google Scholar 

  34. Gu L, Wang Y, Lu R et al 2014 J. Mater. Chem. A 2 7161

    CAS  Google Scholar 

  35. Lang X, Hirata A, Fujita T and Chen M 2011 Nat. Nanotechnol. 6 232

    CAS  Google Scholar 

  36. Lindström H, Södergren S, Solbrand A and Rensmo H 1997 J. Phys. Chem. B 101 7717

    Google Scholar 

  37. Kuwabata S, Masui S, Tomiyori H et al 2000 Electrochim. Acta 46 91

    CAS  Google Scholar 

  38. Saravanakumar B, Purushothaman K K and Muralidharan G 2012 ACS Appl. Mater. Interfaces 4 4484

    CAS  Google Scholar 

  39. Purushothaman K K, Saravanakumar B, Muralidharan G et al 2017 Mater. Technol. 32 584

    CAS  Google Scholar 

  40. Huang G, Li C, Sun X et al 2017 New J. Chem. 41 8977

    CAS  Google Scholar 

  41. Shao L, Wu K, Lin X, Shui M, et al 2014 Ceram. Int. 40 6115

    CAS  Google Scholar 

  42. Armer C F, Lübke M, Reddy M V, Darr J A et al 2017 J. Power Sources 353 40

    CAS  Google Scholar 

  43. Zhai T, Liu H, Li H, Fang X et al 2010 Adv. Mater. 22 2547

    CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the Higher Education Commission of Pakistan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZIA-UR-REHMAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AAMIR, A., AHMAD, A., KHAN, Y. et al. Electrodeposited thick coatings of V2O5 on Ni foam as binder free electrodes for supercapacitors. Bull Mater Sci 43, 273 (2020). https://doi.org/10.1007/s12034-020-02249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02249-6

Keywords

Navigation