Skip to main content

Advertisement

Log in

Conversion of Rice straw to caprylic acid-rich microbial oils by oleaginous yeast isolates

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Incessant research on single cell oils (SCO) has revealed it as a vital sustainable source of rare fatty acids and high value lipids. India is one of the largest global producer of paddy and generates around 130 MT of energy dense lignocellulosic straw, which can be converted into myriad of high-value products. In this context present work demonstrates conversion of rice straw into nutritionally important caprylic-acid rich SCO with concomitant recycling of residual broth for increasing product to effluent discharge ratio along with co-production of singe-cell protein (SCP). Oleaginous yeast isolates Geotrichum candidum NBT-1 and Pichia kudriavzevii NBT-13 employed in the work exhibited co-utilization and simultaneous consumption of glucose and xylose (pre-dominant sugars in lignocellulosic hydrolysates). G. candidum displayed higher lipid titre (5.745 g/L) and biomass concentration (14.88 g/L) in 1:1 combination of non-detoxified rice straw liquid hydrolysate (NDLH) and synthetic media compared with titre (4.32 g/L) and biomass concentration (8.61 g/L) obtained in synthetic media (control). P. kudriavzevii could not endure NDLH and kinetics revealed initiation of lipid-turnover after 168th h. Residual broth was 100% recycled without fresh carbon supplementation resulting in additional lipid titre and yield of 2.45 g/L and 8.12% from G. candidum, in two consecutive fermentations. Defatted biomass from both isolates was 48.66 (NBT-1) and 37.11% (NBT-13) protein rich, a suitable SCP candidate as food or feed supplement. Derived SCO were 70–90% predominant in medium chain fatty acid-caprylic acid, recognized for its ever-increasing nutraceutical and medical benefits with concomitant production of SCP biomass.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Diwan B, Parkhey P, Gupta P (2018) B from agro-industrial wastes to single cell oils: a step towards prospective biorefinery. Folia Microbiol 63(5):547–568. https://doi.org/10.1007/s12223-018-0602-7

    Article  Google Scholar 

  2. Diwan B, Parkhey P, Gupta P (2018) A platform study on the development of a nondetoxified Rice straw Hydrolysate to its application in lipid production from Mortierella alpina. ACS Sustain Chem Eng 6(1):1225–1234. https://doi.org/10.1021/acssuschemeng.7b03530

    Article  Google Scholar 

  3. Balan V, Chiaramonti D, Kumar S (2013) Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin 7(6):732–759. https://doi.org/10.1002/bbb.1436

    Article  Google Scholar 

  4. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52. https://doi.org/10.1016/S0065-2164(02)51000-5

    Article  Google Scholar 

  5. Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. OCL 20(6):D602. https://doi.org/10.1051/ocl/2013029

    Article  Google Scholar 

  6. Sitepu IR, Sestric R, Ignatia L, Levin D, German JB, Gillies LA, Almada LAG, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144:360–369. https://doi.org/10.1016/j.biortech.2013.06.047

    Article  Google Scholar 

  7. Diwan B, Gupta P (2018) A comprehending the influence of critical cultivation parameters on the oleaginous behaviour of potent rotten fruit yeast isolates. J Appl Microbiol 125(2):490–505. https://doi.org/10.1111/jam.13904

    Article  Google Scholar 

  8. Diwan B, Gupta P (2018) B broth recycling in high carbon demanding single cell oil fermentation increased the product to effluent generation ratio. Process Biochem 75(June):68–73

  9. Diwan B, Mukhopadhyaya D, Gupta P (2019) Recent trends in biorefinery based valorisation of lignocellulosic biomass. In: Krishnaraj RN, Sani R (eds) Biovalorisation of wastes to renewable chemicals. Elsevier, pp 219–242

  10. Diwan B, Gupta P (2019) Lignocellulosic biomass to fungal oils: a radical bioconversion towards establishing a prospective resource. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) . Recent Advancement in White Biotechnology Through Fungi, Springer Nature, pp 407–440

    Google Scholar 

  11. Diwan B, Gupta P (2020) A Deuteromycete isolate Geotrichum candidum as oleaginous cell factory for medium-chain fatty acid-rich oils. Curr Microbiol:1–12. https://doi.org/10.1007/s00284-020-02155-4

  12. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102(10):6134–6140. https://doi.org/10.1016/j.biortech.2011.02.081

    Article  Google Scholar 

  13. Gupta P, Parkhey P (2014) A two-step process for efficient enzymatic saccharification of rice straw. Bioresour Technol 173:207–215. https://doi.org/10.1016/J.BIORTECH.2014.09.101

    Article  Google Scholar 

  14. Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32(3):420–424. https://doi.org/10.1016/S0003-2697(69)80009-6

    Article  Google Scholar 

  15. Ayadi I, Kamoun O, Trigui-Lahiani H, Hdiji A, Gargouri A, Belghith H, Guerfali M (2016) Single cell oil production from a newly isolated Candida viswanathii YE4 and agro-industrial by-products valorization. J Ind Microbiol Biotechnol 43(7):901–914

    Article  Google Scholar 

  16. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. Mc Grow Hill Book Company, New York

  17. Phulara SC, Chaurasia D, Diwan B, Chaturvedi P, Gupta P (2018) In-situ Isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process Biochem 72:47–54

    Article  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  Google Scholar 

  19. Bligh EG, Dyer WJ (1959) A rapid method of Total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  Google Scholar 

  20. Gao M, Xu F, Li S, Ji X, Chen S, Zhang D (2010) Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosyst Eng 106(4):470–475. https://doi.org/10.1016/J.BIOSYSTEMSENG.2010.05.011

    Article  Google Scholar 

  21. Díaz-Nava LE, Montes-Garcia N, Domínguez JM, Aguilar-Uscanga MG (2017) Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess Biosyst Eng 40(7):1069–1077. https://doi.org/10.1007/s00449-017-1769-z

    Article  Google Scholar 

  22. Nweze JE, Ndubuisi I, Murata Y, Omae H, Ogbonna JC (2019) Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production. Biofuels 30(6):1–10. https://doi.org/10.1080/17597269.2018.1564480

    Article  Google Scholar 

  23. Fei Q, Wewetzer SJ, Kurosawa K, Rha C, Sinskey AJ (2015) High-cell-density cultivation of an engineered Rhodococcus opacus strain for lipid production via co-fermentation of glucose and xylose. Process Biochem 50(4):500–506. https://doi.org/10.1016/j.procbio.2015.01.008

    Article  Google Scholar 

  24. Qi G-X, Huang C, Chen XF, Xiong L, Wang C, Lin XQ, Shi SL, Yang D, Chen XD (2016) Semi-pilot scale microbial oil production by Trichosporon cutaneum using medium containing corncob acid Hydrolysate. Appl Biochem Biotechnol 179(4):625–632. https://doi.org/10.1007/s12010-016-2019-6

    Article  Google Scholar 

  25. Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA (2015) Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol 197:91–98. https://doi.org/10.1016/j.biortech.2015.08.039

    Article  Google Scholar 

  26. Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102(20):9737–9742. https://doi.org/10.1016/j.biortech.2011.08.025

    Article  Google Scholar 

  27. Huang C, Wu H, Liu Q, Li Y, Zon M (2011) Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J Agric Food Chem 59(9):4606–4613

    Article  Google Scholar 

  28. Chen X, Li Z, Zhang X, Hu F (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159:591–604. https://doi.org/10.1007/s12010-008-8491-x

    Article  Google Scholar 

  29. Yang Y, Hu M, Tang Y, Geng B, Qiu M, He Q, Chen S, Wang X, Yang S (2018) Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. Bioresour Bioprocess 5(1):6. https://doi.org/10.1186/s40643-018-0193-9

    Article  Google Scholar 

  30. Guerfali M, Ayadi I, Belhassen A, Gargouri A, Belghith H (2018) Single cell oil production by Trichosporon cutaneum and lignocellulosic residues bioconversion for biodiesel synthesis. Process Saf Environ 113:292–304. https://doi.org/10.1016/j.psep.2017.11.002

    Article  Google Scholar 

  31. Huang C, Wu H, Liu Z, Cai J, Lou W, Zong M (2012) Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnol Biofuels 5(1):4. https://doi.org/10.1186/1754-6834-5-4

    Article  Google Scholar 

  32. Gong Z, Zhou W, Shen H, Yang Z, Wang G, Zuo Z, Hou Y, Zhao ZK (2016) Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates. Bioresour Technol 207:102–108. https://doi.org/10.1016/j.biortech.2016.01.122

    Article  Google Scholar 

  33. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2(1):26. https://doi.org/10.1186/1754-6834-2-26

    Article  Google Scholar 

  34. Fukuhara H (2003) The Kluyver Effect Revisited. FEMS Yeast Res 3(4):327–331. https://doi.org/10.1016/S1567-1356(03)00112-0

    Article  Google Scholar 

  35. Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150. https://doi.org/10.1016/j.biombioe.2014.06.016

    Article  Google Scholar 

  36. Bonturi N, Crucello A, Viana AJC, Miranda EA (2017) Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem 57:16–25. https://doi.org/10.1016/j.procbio.2017.03.007

    Article  Google Scholar 

  37. Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538. https://doi.org/10.1016/j.biortech.2009.04.022

    Article  Google Scholar 

  38. Huang C, Wu H, Li R, Zong M (2012) Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol 29(3):372–378. https://doi.org/10.1016/j.nbt.2011.03.008

    Article  Google Scholar 

  39. Chang YH, Chang KS, Lee CF, Hsu CL, Huang CW, Jang HD (2015) Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72:95–103. https://doi.org/10.1016/j.biombioe.2014.11.012

    Article  Google Scholar 

  40. Hsiao T-Y, Glatz CE, Glatz BA (1994) Broth recycle in a yeast fermentation. Biotechnol Bioeng 44(10):1228–1234. https://doi.org/10.1002/bit.260441010

    Article  Google Scholar 

  41. Wang Y, Liu W, Bao J (2012) Repeated batch fermentation with water recycling and cell separation for microbial lipid production. Front Chem Sci Eng 6(4):453–460. https://doi.org/10.1007/s11705-012-1210-8

    Article  Google Scholar 

  42. Bach AC, Babayan VK (1982) Medium-chain triglycerides: an update. Am J Clin Nutr 36(5):950–962. https://doi.org/10.1093/ajcn/36.5.950

    Article  Google Scholar 

  43. Lee Y, Tang T, Lai O (2012) Health benefits, enzymatic production, and application of medium- and long-chain triacylglycerol (MLCT) in food industries : a review. J Food Sci 77(8):137–144. https://doi.org/10.1111/j.1750-3841.2012.02793.x

    Article  Google Scholar 

  44. Kates M, Baxter RM (1962) Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Can J Biochem Physiol 40(9):1213–1227. https://doi.org/10.1139/o62-136

    Article  Google Scholar 

  45. Mamatha SS (2009) Polyunsaturated Fatty Acids (PUFAs) of Mucor sp. with special reference to gamma linolenic acid (GLA). PhD thesis, University of Mysore

  46. Subhash GV, Mohan SV (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102(19):9286–9290. https://doi.org/10.1016/j.biortech.2011.06.084

    Article  Google Scholar 

  47. Carvalho AKF, da Conceição LRV, Silva JPV, Perez VH, de Castro HF (2017) Biodiesel production from Mucor circinelloides using ethanol and heteropolyacid in one and two-step transesterification. Fuel 202:503–511. https://doi.org/10.1016/j.fuel.2017.04.063

    Article  Google Scholar 

  48. Zhang G, French WT, Hernandez R, Alley E, Paraschivescu M (2011) Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass Bioenergy 35(1):734–740. https://doi.org/10.1016/j.biombioe.2010.10.009

    Article  Google Scholar 

  49. Subhash GV, Mohan SV (2014) Lipid accumulation for biodiesel production by oleaginous fungus Aspergillus awamori: influence of critical factors. Fuel 116:509–515. https://doi.org/10.1016/j.fuel.2013.08.035

    Article  Google Scholar 

  50. Karatay SE, Dönmez G (2011) Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl Energy 88(11):3632–3635. https://doi.org/10.1016/j.apenergy.2011.04.010

    Article  Google Scholar 

  51. Diwan B, Gupta P (2020) Synthesis of MCFA and PUFA rich oils by enzymatic structuring of flax oil with single cell oils. LWT 109928:109928. https://doi.org/10.1016/j.lwt.2020.109928

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge SICART Gujarat for conducting GC analysis and BioRaj laboratories, Nagpur for conduction total N, P & K analysis of Biomass.

Availability of data and material

All the data is present in manuscript itself.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, project administration of research have been done by Batul Diwan, first author and Dr. Pratima Gupta, corresponding author together. B Diwan did the data curation, experimental investigation. Dr. P Gupta, corresponding author, supervised and validated the work. Original draft was written by B Diwan, reviewed by Dr. P Gupta and edited by both the authors.

Corresponding author

Correspondence to Pratima Gupta.

Ethics declarations

Conflicts of interest/competing interests)

No competing interest.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Authors give their consent for publication upon acceptance of the article.

Code availability

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwan, B., Gupta, P. Conversion of Rice straw to caprylic acid-rich microbial oils by oleaginous yeast isolates. Biomass Conv. Bioref. 12, 5901–5914 (2022). https://doi.org/10.1007/s13399-020-01039-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01039-8

Keywords

Navigation