Skip to main content

Advertisement

Log in

Recent advances and mechanistic insights on the production of biomass-derived 2,5-bis(alkoxymethyl)furans

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Transforming biomass resources into high-quality liquid fuels is a very crucial, effective, and feasible approach in biorefinery processes. Among various biomass-derived liquid fuels, 2,5-bis(alkoxymethyl)furans (BAMFs), which can be produced from 2,5-bis(hydroxymethyl)furan (BHMF), 5-hydroxymethylfurfural (HMF), or fructose, are particularly attractive and widely considered to be a new type of biodiesel candidates or diesel additives due to their excellent physicochemical properties, such as high energy density, high cetane number, high boiling point, and strong stability, so they have received wide attention in recent years. At present, the relevant studies on the production of BAMFs are rapidly implementing, many progressive techniques are constantly developed and satisfactory results are increasingly obtained. However, up to now, a special, systematic and intensive review is still lacking in this research area. To better understand the current research situation, this review comprehensively summarizes and discusses different production methods and corresponding achievements of BAMFs, and emphatically analyzes the main functions and cooperative actions of active sites of catalysts in dehydration, reduction, and etherification reactions as well as the merits and demerits of exogenous and endogenous hydrogen systems. Moreover, this review also proposes several valuable and available ideas and viewpoints for the future studies of BAMFs. In a word, the main objective of this review is to draw more concerns about BAMFs and provide some theoretical references and technical supports for the high-efficiency, green, and economical production of BAMFs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mika LT, Csefalvay E, Nemeth A (2018) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118:505–613. https://doi.org/10.1021/acs.chemrev.7b00395

    Article  Google Scholar 

  2. Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S (2018) How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem Rev 118:11023–11117. https://doi.org/10.1021/acs.chemrev.8b00134

    Article  Google Scholar 

  3. Zhang ZR, Song JL, Han BX (2017) Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev 117:6834–6880. https://doi.org/10.1021/acs.chemrev.6b00457

    Article  Google Scholar 

  4. Agarwal B, Kailasam K, Sangwan RS, Elumalai S (2018) Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: a review. Renew Sust Energ Rev 82:2408–2425. https://doi.org/10.1016/j.rser.2017.08.088

    Article  Google Scholar 

  5. Hu L, Lin L, Wu Z, Zhou SY, Liu SJ (2017) Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew Sust Energ Rev 74:230–257. https://doi.org/10.1016/j.rser.2017.02.042

    Article  Google Scholar 

  6. Kong X, Zhu YF, Fang Z, Kozinski JA, Butler IS, Xu L, Song H, Wei XJ (2018) Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chem 20:3657–3682. https://doi.org/10.1039/c8gc00234g

    Article  Google Scholar 

  7. Luo X, Li Y, Gupta NK, Sels B, Ralph J, Shuai L (2020) Protection strategies enable selective conversion of biomass. Angew Chem Int Ed 59:11704–11716. https://doi.org/10.1002/anie.201914703

    Article  Google Scholar 

  8. Hu L, Xu JX, Zhou SY, He AY, Tang X, Lin L, Xu JM, Zhao YJ (2018) Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran. ACS Catal 8:2959–2980. https://doi.org/10.1021/acscatal.7b03530

    Article  Google Scholar 

  9. Graham BJ, Raines RT (2018) Efficient metal-free conversion of glucose to 5-hydroxymethylfurfural using a boronic acid. Biomass Conv Bioref 9:471–477. https://doi.org/10.1007/s13399-018-0346-2

  10. Xu Y, Liu G, Fu J, Kang S, Xiao Y, Yang P, Liao W (2019) Catalytic hydrolysis of cellulose to levulinic acid by partly replacing sulfuric acid with Nafion® NR50 catalyst. Biomass Conv Bioref 9:609–616. https://doi.org/10.1007/s13399-019-00373-w

  11. Bungay HR (1982) Biomass refining. Science 218:643–646. https://doi.org/10.1126/science.218.4573.643

    Article  Google Scholar 

  12. Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9:562–582. https://doi.org/10.1002/cssc.201501405

    Article  Google Scholar 

  13. Esposito D, Antonietti M (2015) Redefining biorefinery: the search for unconventional building blocks for materials. Chem Soc Rev 44:5821–5835. https://doi.org/10.1039/c4cs00368c

    Article  Google Scholar 

  14. Liu DJ, Chen EYX (2014) Organocatalysis in biorefining for biomass conversion and upgrading. Green Chem 16:964–981. https://doi.org/10.1039/c3gc41934g

    Article  Google Scholar 

  15. Karinen R, Vilonen K, Niemela M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016. https://doi.org/10.1002/cssc.201000375

    Article  Google Scholar 

  16. Ma JP, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86. https://doi.org/10.1016/j.jechem.2019.04.026

    Article  Google Scholar 

  17. Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R (2018) Carbon-increasing catalytic strategies for upgrading biomass into enery-intensive fuels and chemicals. ACS Catal 8:148–187. https://doi.org/10.1021/acscatal.7b02577

    Article  Google Scholar 

  18. Asomaning J, Haupt S, Chae M, Bressler DC (2018) Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renew Sust Energ Rev 92:642–657. https://doi.org/10.1016/j.rser.2018.04.084

    Article  Google Scholar 

  19. Shylesh S, Gokhale AA, Ho CR, Bell AT (2017) Novel strategies for the production of fuels, lubricants, and chemicals from biomass. Acc Chem Res 50:2589–2597. https://doi.org/10.1021/acs.accounts.7b00354

    Article  Google Scholar 

  20. Li H, Fang Z, Smith RL, Yang S (2016) Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog Energy Combust Sci 55:98–194. https://doi.org/10.1016/j.pecs.2016.04.004

    Article  Google Scholar 

  21. Natsir TA, Shimazu S (2020) Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans. Fuel Process Technol 200:106308. https://doi.org/10.1016/j.fuproc.2019.106308

    Article  Google Scholar 

  22. Liu H, Tang X, Hao WW, Zeng XH, Sun Y, Lei TZ, Lin L (2018) One-pot tandem conversion of fructose into biofuel components with in-situ generated catalyst system. J Energy Chem 27:375–380. https://doi.org/10.1016/j.jechem.2018.01.002

    Article  Google Scholar 

  23. Wei JN, Wang T, Liu H, Li MZ, Tang X, Sun Y, Zeng XH, Hu L, Lei TZ, Lin L (2019) Highly efficient reductive etherification of 5-hydroxymethylfurfural to 2,5-bis(alkoxymethyl)furans as biodiesel components over Zr-SBA catalyst. Energ Technol 7:1801071. https://doi.org/10.1002/ente.201801071

    Article  Google Scholar 

  24. Wei JN, Wang T, Cao XJ, Liu H, Tang X, Sun Y, Zeng XH, Lei TZ, Liu SJ, Lin L (2019) A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels. Appl Catal B Environ 258:117793. https://doi.org/10.1016/j.apcatb.2019.117793

    Article  Google Scholar 

  25. Nguyen H, Xiao N, Daniels S, Marcella N, Timoshenko J, Frenkel A, Vlachos DG (2017) Role of Lewis and Brønsted acidity in metal chloride catalysis in organic media: reductive etherification of furanics. ACS Catal 7:7363–7370. https://doi.org/10.1021/acscatal.7b02348

    Article  Google Scholar 

  26. Wei JN, Cao XJ, Wang T, Liu H, Tang X, Zeng XH, Sun Y, Lei TZ, Liu SJ, Lin L (2018) Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalyst. Catal Sci Technol 8:4474–4484. https://doi.org/10.1039/C8CY00500A

    Article  Google Scholar 

  27. De Jong E, Vijlbrief T, Hijkoop R, Gruter GJM, Van Der Waal JC (2012) Promising results with YXY diesel components in an ESC test cycle using a PACCAR diesel engine. Biomass Bioenergy 36:151–159. https://doi.org/10.1016/j.biombioe.2011.10.034

    Article  Google Scholar 

  28. Cao Q, Liang WY, Guan J, Wang L, Qu Q, Zhang XZ, Wang XC, Mu XD (2014) Catalytic synthesis of 2,5-bis-methoxymethylfuran: a promising cetane number improver for diesel. Appl Catal A Gen 481:49–53. https://doi.org/10.1016/j.apcata.2014.05.003

    Article  Google Scholar 

  29. Fang WT, Hu HL, Dong P, Ma ZS, He YL, Wang L, Zhang YJ (2018) Improvement of furanic diether selectivity by adjusting Brønsted and Lewis acidity. Appl Catal A Gen 565:146–151. https://doi.org/10.1016/j.apcata.2018.07.013

    Article  Google Scholar 

  30. Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(Alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14:1626–1634. https://doi.org/10.1039/c2gc35102a

    Article  Google Scholar 

  31. Han J, Kim J, Jung BY, Hwang S, Jegal J, Kim YH, Lee YS (2017) Highly selective catalytic hydrogenation and etherification of 5-hydroxymethyl-2-furaldehyde to 2,5-bis(alkoxymethyl)furans for potential biodiesel production. Synlett 28:2299–2302. https://doi.org/10.1055/s-0036-1589076

    Article  Google Scholar 

  32. Musolino M, Ginés-Molina MJ, Moreno-Tost R, Aricò F (2019) Purolite-catalyzed etherification of 2,5-bis(hydroxymethyl)furan: a systematic study. ACS Sustain Chem Eng 7:10221–10226. https://doi.org/10.1021/acssuschemeng.9b01413

    Article  Google Scholar 

  33. Guo W, Heeres HJ, Yue J (2020) Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chem Eng J 381:122754. https://doi.org/10.1016/j.cej.2019.122754

    Article  Google Scholar 

  34. Qiu G, Huang C, Sun X, Chen B (2019) Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose. Green Chem 21:3930–3939. https://doi.org/10.1039/c9gc01225g

    Article  Google Scholar 

  35. Huang FM, Su YW, Long ZY, Chen GJ, Yao Y (2018) Enhanced formation of 5-hydroxymethylfurfural from glucose using a silica-supported phosphate and iron phosphate heterogeneous catalyst. Ind Eng Chem Res 57:10198–10205. https://doi.org/10.1021/acs.iecr.8b01531

    Article  Google Scholar 

  36. Chen DW, Liang FB, Feng DX, Xian M, Zhang HB, Liu HZ, Du FL (2016) An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chem Eng J 300:177–184. https://doi.org/10.1016/j.cej.2016.04.039

    Article  Google Scholar 

  37. Huang B, Cheng Y, Ma J, Chen Z, Yu K, Sun Y (2019) The titanium-aluminum binary oxide immobilized over long-axis SBA-15 as efficient and benign catalyst for conversion of sucrose into 5-hydroxymethylfurfural. Catal Surv Jpn 23:181–198. https://doi.org/10.1007/s10563-019-09267-3

    Article  Google Scholar 

  38. Qiu G, Wang XC, Huang CP, Zhang P, Li YX, Chen BH (2018) Synthesis of 5-hydroxymethylfurfural from sucrose catalyzed by phosphotungstate. Chin J Org Chem 38:940–948. https://doi.org/10.6023/cjoc201709007

  39. Yu SB, Zang HJ, Yang XL, Zhang MC, Xie RR, Yu PF (2017) Highly efficient preparation of 5-hydroxymethylfurfural from sucrose using ionic liquids and heteropolyacid catalysts in dimethyl sulfoxide-water mixed solvent. Chin Chem Lett 28:1479–1484. https://doi.org/10.1016/j.cclet.2017.02.016

    Article  Google Scholar 

  40. Kreissl HT, Nakagawa K, Peng YK, Koito Y, Zheng JL, Tsang SCE (2016) Niobium oxides: correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural. J Catal 338:329–339. https://doi.org/10.1016/j.jcat.2016.03.007

    Article  Google Scholar 

  41. Li H, Yang S (2014) Catalytic transformation of fructose and sucrose to HMF with proline-derived ionic liquids under mild conditions. Int J Chem Eng 2014:1–7. https://doi.org/10.1155/2014/978708

    Article  Google Scholar 

  42. Kimura H, Yoshida K, Uosaki Y, Nakahara M (2013) Effect of water content on conversion of cellobiose into 5-hydroxymethyl-2-furaldehyde in a dimethyl sulfoxide-water mixture. J Phys Chem A 117:10987–10996. https://doi.org/10.1021/jp407801u

    Article  Google Scholar 

  43. Beckerle K, Okuda J (2012) Conversion of glucose and cellobiose into 5-hydroxymethylfurfural (HMF) by rare earth metal salts in N,N′-dimethylacetamide (DMA). J Mol Catal A Chem 356:158–164. https://doi.org/10.1016/j.molcata.2012.01.008

    Article  Google Scholar 

  44. Hu L, Zhao G, Tang X, Wu Z, Xu JX, Lin L, Liu SJ (2013) Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Bioresour Technol 148:501–507. https://doi.org/10.1016/j.biortech.2013.09.016

    Article  Google Scholar 

  45. Zhang L, Shah A, Michel FC (2019) Synthesis of 5-hydroxymethylfurfural from fructose and inulin catalyzed by magnetically-recoverable Fe3O4@SiO2@TiO2-HPW nanoparticles. J Chem Technol Biotechnol 94:3393–3402. https://doi.org/10.1002/jctb.6153

    Article  Google Scholar 

  46. Xie HB, Zhao ZB, Wang Q (2012) Catalytic conversion of inulin and fructose into 5-hydroxymethylfurfural by lignosulfonic acid in ionic liquids. ChemSusChem 5:901–905. https://doi.org/10.1002/cssc.201100588

    Article  Google Scholar 

  47. Shen X, Wang YX, Hu CW, Qian K, Ji Z, Jin M (2012) One-pot conversion of inulin to furan derivatives catalyzed by sulfated TiO2/mordenite solid acid. ChemCatChem 4:2013–2019. https://doi.org/10.1002/cctc.201200190

    Article  Google Scholar 

  48. Yi YB, Lee JW, Hong SS, Choi YH, Chung CH (2011) Acid-mediated production of hydroxymethylfurfural from raw plant biomass with high inulin in an ionic liquid. J Ind Eng Chem 17:6–9. https://doi.org/10.1016/j.jiec.2010.12.017

    Article  Google Scholar 

  49. Wu S, Fan H, Xie Y, Cheng Y, Wang Q, Zhang Z, Han BX (2010) Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chem 12:1215–1219. https://doi.org/10.1039/c002553d

    Article  Google Scholar 

  50. Matharu AS, Ahmed S, Almonthery B, Macquarrie DJ, Lee YS, Kim Y (2018) Starbon/high-amylose corn starch-supported N-heterocyclic carbene-iron(III) catalyst for conversion of fructose into 5-hydroxymethylfurfural. ChemSusChem 11:716–725. https://doi.org/10.1002/cssc.201702207

    Article  Google Scholar 

  51. Cao L, Yu IKM, Tsang DCW, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresour Technol 267:242–248. https://doi.org/10.1016/j.biortech.2018.07.048

    Article  Google Scholar 

  52. Yu IK, Tsang DC, Yip AC, Chen SS, Wang L, Ok YS, Poon CS (2017) Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity. Bioresour Technol 237:222–230. https://doi.org/10.1016/j.biortech.2017.01.017

    Article  Google Scholar 

  53. Goswami SR, Dumont MJ, Raghavan V (2016) Microwave assisted synthesis of 5-hydroxymethylfurfural from starch in AlCl3·6H2O/DMSO/[BMIM]Cl system. Ind Eng Chem Res 55:4473–4481. https://doi.org/10.1021/acs.iecr.6b00201

    Article  Google Scholar 

  54. Yepez A, Garcia A, Climent MS, Romero Reyes AA, Luque R (2014) Catalytic conversion of starch into valuable furan derivatives using supported metal nanoparticles on mesoporous aluminosilicate materials. Catal Sci Technol 4:428–434. https://doi.org/10.1039/c3cy00762f

    Article  Google Scholar 

  55. Fang J, Zheng W, Liu K, Li H, Li C (2020) Molecular design and experimental study on the synergistic catalysis of cellulose into 5-hydroxymethylfurfural with Brønsted-Lewis acidic ionic liquids. Chem Eng J 385:123796. https://doi.org/10.1016/j.cej.2019.123796

    Article  Google Scholar 

  56. Cao Z, Fan ZX, Chen Y, Li M, Shen T, Zhu CJ, Ying HJ (2019) Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates. Appl Catal B Environ 244:170–177. https://doi.org/10.1016/j.apcatb.2018.11.019

    Article  Google Scholar 

  57. Li XC, Peng KH, Xia QN, Liu XH, Wang YQ (2018) Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites. Chem Eng J 332:528–536. https://doi.org/10.1016/j.cej.2017.06.105

    Article  Google Scholar 

  58. Zhang C, Cheng ZT, Fu ZH, Liu YC, Yi XF, Zheng AM, Kirk SR, Yin DL (2016) Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water. Cellulose 24:95–106. https://doi.org/10.1007/s10570-016-1118-4

    Article  Google Scholar 

  59. Atanda L, Konarova M, Ma Q, Mukundan S, Shrotri A, Beltramini J (2016) High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catal Sci Technol 6:6257–6266. https://doi.org/10.1039/c6cy00820h

    Article  Google Scholar 

  60. Yu X, Chu Y, Zhang L, Shi H, Xie M, Peng L, Guo X, Li W, Xue N, Ding W (2020) Adjacent acid sites cooperatively catalyze fructose to 5-hydroxymethylfurfural in a new, facile pathway. J Energy Chem 47:112–117. https://doi.org/10.1016/j.jechem.2019.11.020

    Article  Google Scholar 

  61. Johnson RL, Perras FA, Hanrahan MP, Mellmer M, Garrison TF, Kobayashi T, Dumesic JA, Pruski M, Rossini AJ, Shanks BH (2019) Condensed phase deactivation of solid Brønsted acids in the dehydration of fructose to hydroxymethylfurfural. ACS Catal 9:11568–11578. https://doi.org/10.1021/acscatal.9b03455

    Article  Google Scholar 

  62. He YX, Itta AK, Alwakwak A-a, Huang M, Rezaei F, Rownaghi AA (2018) Aminosilane-grafted SiO2-ZrO2 polymer hollow fibers as bifunctional microfluidic reactor for tandem reaction of glucose and fructose to 5-hydroxymethylfurfural. ACS Sustain Chem Eng 6:17211–17219. https://doi.org/10.1021/acssuschemeng.8b04555

    Article  Google Scholar 

  63. Yang ZZ, Qi W, Huang RL, Fang J, Su RX, He ZM (2016) Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural. Chem Eng J 296:209–216. https://doi.org/10.1016/j.cej.2016.03.084

    Article  Google Scholar 

  64. Li XL, Zhang K, Chen SY, Li C, Li F, Xu HJ, Fu Y (2018) A cobalt catalyst for reductive etherification of 5-hydroxymethylfurfural to 2,5-bis(methoxymethyl)furan under mild conditions. Green Chem 20:1095–1105. https://doi.org/10.1039/c7gc03072j

    Article  Google Scholar 

  65. Sacia ER, Balakrishnan M, Bell AT (2014) Biomass conversion to diesel via the etherification of furanyl alcohols catalyzed by Amberlyst-15. J Catal 313:70–79. https://doi.org/10.1016/j.jcat.2014.02.012

    Article  Google Scholar 

  66. Fang W, Hu H, Ma Z, Wang L, Zhang Y (2018) Two possible side reaction pathways during furanic etherification. Catalysts 8:383–392. https://doi.org/10.3390/catal8090383

    Article  Google Scholar 

  67. Hu H, Hu D, Jin H, Zhang P, Li G, Zhou H, Yang Y, Chen C, Zhang J, Wang L (2019) Efficient production of furanic diether in a continuous fixed bed reactor. ChemCatChem 11:2179–2186. https://doi.org/10.1002/cctc.201900054

    Article  Google Scholar 

  68. Gupta D, Saha B (2018) Dual acidic titania carbocatalyst for cascade reaction of sugar to etherified fuel additives. Catal Commun 110:46–50. https://doi.org/10.1016/j.catcom.2018.02.026

    Article  Google Scholar 

  69. Elsayed I, Jackson MA, Hassan EB (2020) Hydrogen-free catalytic reduction of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan using copper-iron oxides bimetallic catalyst. ACS Sustain Chem Eng 8:1774–1785. https://doi.org/10.1021/acssuschemeng.9b05575

    Article  Google Scholar 

  70. Li H, Yang TT, Fang Z (2018) Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Appl Catal B Environ 227:79–89. https://doi.org/10.1016/j.apcatb.2018.01.017

    Article  Google Scholar 

  71. Pasini T, Lolli A, Albonetti S, Cavani F, Mella M (2014) Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: scope, limitations, and reaction mechanism. J Catal 317:206–219. https://doi.org/10.1016/j.jcat.2014.06.023

    Article  Google Scholar 

  72. Op De Beeck B, Dusselier M, Geboers J, Holsbeek J, Morré E, Oswald S, Giebeler L, Sels BF (2015) Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ Sci 8:230–240. https://doi.org/10.1039/c4ee01523a

    Article  Google Scholar 

  73. Gao Z, Fan GL, Yang L, Li F (2017) Double-active sites cooperatively catalyzed transfer hydrogenation of ethyl levulinate over a ruthenium-based catalyst. Mol Catal 442:181–190. https://doi.org/10.1016/j.mcat.2017.09.026

    Article  Google Scholar 

  74. Li AY, Segalla A, Li CJ, Moores A (2017) Mechanochemical metal-free transfer hydrogenation of carbonyls using polymethylhydrosiloxane as the hydrogen source. ACS Sustain Chem Eng 5:11752–11760. https://doi.org/10.1021/acssuschemeng.7b03298

    Article  Google Scholar 

  75. Zhou S, Dai F, Chen Y, Dang C, Zhang C, Liu D, Qi H (2019) Sustainable hydrothermal self-assembly of hafnium-lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural. Green Chem 21:1421–1431. https://doi.org/10.1039/c8gc03710h

    Article  Google Scholar 

  76. Xue ZM, Jiang JY, Li GF, Zhao WC, Wang JF, Mu TC (2016) Zirconium-cyanuric acid coordination polymer: highly efficient catalyst for conversion of levulinic acid to γ-valerolactone. Catal Sci Technol 6:5374–5379. https://doi.org/10.1039/C5CY02215K

    Article  Google Scholar 

  77. Xiang XM, Cui JL, Ding GQ, Zheng HY, Zhu YL, Li YW (2016) One-step continuous conversion of fructose to 2,5-dihydroxymethylfuran and 2,5-dimethylfuran. ACS Sustain Chem Eng 4:4506–4510. https://doi.org/10.1021/acssuschemeng.6b01411

    Article  Google Scholar 

  78. Upare PP, Hwang YK, Hwang DW (2018) An integrated process for the production of 2,5-dihydroxymethylfuran and its polymer from fructose. Green Chem 20:879–885. https://doi.org/10.1039/c7gc03597g

    Article  Google Scholar 

  79. Thananatthanachon T, Rauchfuss TB (2010) Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. ChemSusChem 3:1139–1141. https://doi.org/10.1002/cssc.201000209

    Article  Google Scholar 

  80. Wu D, Hernández WY, Zhang S, Vovk EI, Zhou X, Yang Y, Khodakov AY, Ordomsky VV (2019) In situ generation of Brønsted acidity in the Pd-I bifunctional catalysts for selective reductive etherification of carbonyl compounds under mild conditions. ACS Catal 9:2940–2948. https://doi.org/10.1021/acscatal.8b04925

    Article  Google Scholar 

  81. Leng Y, Shi L, Du S, Jiang J, Jiang P (2020) A tannin-derived zirconium-containing porous hybrid for efficient Meerwein-Ponndorf-Verley reduction under mild conditions. Green Chem 22:180–186. https://doi.org/10.1039/c9gc03393a

    Article  Google Scholar 

  82. Zhou S, Dai F, Xiang Z, Song T, Liu D, Lu F, Qi H (2019) Zirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl Catal B Environ 248:31–43. https://doi.org/10.1016/j.apcatb.2019.02.011

    Article  Google Scholar 

  83. Rojas-Buzo S, Garcia-Garcia P, Corma A (2018) Catalytic transfer hydrogenation of biomass-derived carbonyls over hafnium-based metal-organic frameworks. ChemSusChem 11:432–438. https://doi.org/10.1002/cssc.201701708

    Article  Google Scholar 

  84. Li H, He J, Riisager A, Saravanamurugan S, Song B, Yang S (2016) Acid-base bifunctional zirconium N-alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides. ACS Catal 6:7722–7727. https://doi.org/10.1021/acscatal.6b02431

    Article  Google Scholar 

  85. Hu L, Li N, Dai XL, Guo YQ, Jiang YT, He AY, Xu JX (2019) Highly efficient production of 2,5-dihydroxymethylfuran from biomass-derived 5-hydroxymethylfurfural over an amorphous and mesoporous zirconium phosphonate catalyst. J Energy Chem 37:82–92. https://doi.org/10.1016/j.jechem.2018.12.001

    Article  Google Scholar 

  86. Hu L, Dai XL, Li N, Tang X, Jiang YT (2019) Highly selective hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over an acid–base bifunctional hafnium-based coordination polymer catalyst. Sustainable Energy Fuels 3:1033–1041. https://doi.org/10.1039/c8se00545a

  87. Hu L, Li T, Xu JX, He AY, Tang X, Chu XZ, Xu JM (2018) Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran over magnetic zirconium-based coordination polymer. Chem Eng J 352:110–119. https://doi.org/10.1016/j.cej.2018.07.007

    Article  Google Scholar 

  88. Hu D, Hu H, Jin H, Zhang P, Hu Y, Ying S, Li X, Yang Y, Zhang J, Wang L (2020) Building hierarchical zeolite structure by post-synthesis treatment to promote the conversion of furanic molecules into biofuels. Appl Catal A Gen 590:117338. https://doi.org/10.1016/j.apcata.2019.117338

    Article  Google Scholar 

  89. Jae J, Mahmoud E, Lobo RF, Vlachos DG (2014) Cascade of liquid-phase catalytic transfer hydrogenation and etherification of 5-hydroxymethylfurfural to potential biodiesel components over Lewis acid zeolites. ChemCatChem 6:508–513. https://doi.org/10.1002/cctc.201300978

    Article  Google Scholar 

  90. Luo J, Yu JY, Gorte RJ, Mahmoud E, Vlachos DG, Smith MA (2014) The effect of oxide acidity on HMF etherification. Catal Sci Technol 4:3074–3081. https://doi.org/10.1039/c4cy00563e

    Article  Google Scholar 

  91. Lewis JD, Van de Vyver S, Crisci AJ, Gunther WR, Michaelis VK, Griffin RG, Roman-Leshkov Y (2014) A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites. ChemSusChem 7:2255–2265. https://doi.org/10.1002/cssc.201402100

    Article  Google Scholar 

  92. Shinde S, Rode CV (2017) Cascade reductive-etherification of bio-derived aldehydes over Zr-based catalysts. ChemSusChem 10:4090–4101. https://doi.org/10.1002/cssc.201701275

    Article  Google Scholar 

  93. Huang RL, Qi W, Su RX, He ZM (2010) Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chem Commun 46:1115–1117. https://doi.org/10.1039/b921306f

    Article  Google Scholar 

  94. Qi XH, Watanabe M, Aida TM, Smith RL (2010) Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. ChemSusChem 3:1071–1077. https://doi.org/10.1002/cssc.201000124

    Article  Google Scholar 

  95. Hu L, Sun Y, Lin L (2012) Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid. Ind Eng Chem Res 51:1099–1104. https://doi.org/10.1021/ie202174f

    Article  Google Scholar 

  96. Liu B, Zhang ZH, Zhao ZB (2013) Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids. Chem Eng J 215-216:517–521. https://doi.org/10.1016/j.cej.2012.11.019

    Article  Google Scholar 

  97. Galkin KI, Ananikov VP (2019) When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken? ChemSusChem 12:2976–2982. https://doi.org/10.1002/cssc.201900592

    Article  Google Scholar 

  98. Zhang Y, Li B, Wei Y, Yan C, Meng M, Yan Y (2019) Direct synthesis of metal-organic frameworks catalysts with tunable acid-base strength for glucose dehydration to 5-hydroxymethylfurfural. J Taiwan Inst Chem Eng 96:93–103. https://doi.org/10.1016/j.jtice.2018.12.020

    Article  Google Scholar 

  99. Wang HL, Kong QQ, Wang YX, Deng TS, Chen CM, Hou XL, Zhu YL (2014) Graphene oxide catalyzed dehydration of fructose into 5-hydroxymethylfurfural with isopropanol as cosolvent. ChemCatChem 6:728–732. https://doi.org/10.1002/cctc.201301067

    Article  Google Scholar 

  100. Hu L, Tang X, Wu Z, Lin L, Xu JX, Xu N, Dai BL (2015) Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chem Eng J 263:299–308. https://doi.org/10.1016/j.cej.2014.11.044

    Article  Google Scholar 

  101. Sun Q, Tang Y, Aguila B, Wang S, Xiao FS, Thallapally PK, Alenizi AM, Nafady A, Ma S (2019) Reaction environment modification in covalent organic frameworks for catalytic performance enhancement. Angew Chem Int Ed 131:8762–8767. https://doi.org/10.1002/anie.201900029

    Article  Google Scholar 

  102. Marullo S, Rizzo C, D’Anna F (2019) Activity of a heterogeneous catalyst in deep eutectic solvents: the case of carbohydrate conversion into 5-hydroxymethylfurfural. ACS Sustain Chem Eng 7:13359–13368. https://doi.org/10.1021/acssuschemeng.9b02605

    Article  Google Scholar 

  103. Wei J, Wang T, Liu H, Liu Y, Tang X, Sun Y, Zeng X, Lei T, Liu S, Lin L (2020) Assembly of Zr-based coordination polymer over USY zeolite as a highly efficient and robust acid catalyst for one-pot transformation of fructose into 2,5-bis(isopropoxymethyl)furan. J Catal 389:87–98. https://doi.org/10.1016/j.jcat.2020.05.020

    Article  Google Scholar 

Download references

Funding

This work was sponsored by the Natural Science Foundation of Jiangsu Province (BK20190105 and BK20191056), the National Natural Science Foundation of China (22078123 and 21908075), the Industry-Academia Cooperation Project of Jiangsu Province (BY2019150), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (19KJA150010 and 19KJB22006), the Natural Science Foundation of Huaian City (HAB202057), the Qinglan Project of Jiangsu Province, the Youth Talent Promotion Project of Jiangsu Association of Science and Technology, and the Open Project of Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology (BEETKC1908).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Hu or Zhen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Jiang, Y., Wang, X. et al. Recent advances and mechanistic insights on the production of biomass-derived 2,5-bis(alkoxymethyl)furans. Biomass Conv. Bioref. 13, 1343–1358 (2023). https://doi.org/10.1007/s13399-020-01062-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01062-9

Keywords

Navigation