Skip to main content
Log in

Evolution of a Viscous Protoplanetary Disk with Convectively Unstable Regions. II. Accretion Regimes and Long-Term Dynamics

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In this article, we proceed to study convection as a possible factor of episodic accretion in protoplanetary disks. Within the model presented in Article I, the accretion history is analyzed at different rates and areas of matter inflow from the envelope onto the disk. It is shown that the burst-like regime occurs in a wide range of parameters. The long-term evolution of the disk is also modeled, including the decreasing-with-time matter inflow from the envelope. It is demonstrated that the disk becomes convectively unstable and maintains burst-like accretion onto the star for several million years. Meanwhile, the instability expands to an area of several tens of astronomical units and gradually decreases with time. It is also shown that at early stages in the disk evolution, conditions arise for gravitational instability in the outer parts of the disk and for dust evaporation in the convectively unstable inner regions. The general conclusion of the study is that convection can serve as one of the mechanisms of episodic accretion in protostellar disks, but this conclusion needs to be verified using more consistent hydrodynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. L. Hartmann and S. J. Kenyon, Ann. Rev. Astron. Astrophys. 34, 207 (1996).

    Article  ADS  Google Scholar 

  2. M. Audard, P. Árahám, M. M. Dunham, J. D. Green, et al., in Protostars and Planets VI, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Univ. of Arizona Press, Tucson, 2014), p. 387; arXiv:1401.3368 [astro-ph.SR].

  3. L. Hartmann, Accretion Processes in Star Formation (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  4. E. I. Vorobyov and S. Basu, Astrophys. J. 650, 956 (2006); arXiv:astro-ph/0607118.

    Article  ADS  Google Scholar 

  5. Z. Zhu, L. Hartmann, C. Gammie, and J. C. McKinney, Astrophys. J. 701, 620 (2009); arXiv:0906.1595 [astro-ph.SR].

    Article  ADS  Google Scholar 

  6. W. Kley and D. N. C. Lin, Astrophys. J. 518, 833 (1999).

    Article  ADS  Google Scholar 

  7. D. N. C. Lin and J. Papaloizou, Mon. Not. R. Astron. Soc. 191, 37 (1980).

    ADS  Google Scholar 

  8. N. Shakura and K. Postnov, Mon. Not. R. Astron. Soc. 451, 3995 (2015); arXiv:1506.00526 [astro-ph.HE].

  9. K. L. Malanchev, K. A. Postnov, and N. I. Shakura, Mon. Not. R. Astron. Soc. 464, 410 (2017); arXiv:1609.03799 [astro-ph.HE].

  10. L. E. Held and H. N. Latter, Mon. Not. R. Astron. Soc. 480, 4797 (2018); arXiv:1808.00267 [astro-ph.SR].

  11. Y. N. Pavlyuchenkov, A. V. Tutukov, L. A. Maksimova, and E. I. Vorobyov, Astron. Rep. 64, 1 (2020); arXiv:1912.08572 [astro-ph.SR].

  12. J. E. Pringle, Ann. Rev. Astron. Astrophys. 19, 137 (1981).

    Article  ADS  Google Scholar 

  13. G. V. Lipunova and N. I. Shakura, Izv. Akad. Nauk, Ser. Fiz. 67, 322 (2003).

    Google Scholar 

  14. S. Hirose, O. Blaes, J. H. Krolik, M. S. B. Coleman, and T. Sano, Astrophys. J. 787, 1 (2014); arXiv:1403.3096 [astro-ph.HE].

    Article  ADS  Google Scholar 

  15. M. S. B. Coleman, I. Kotko, O. Blaes, J. P. Lasota, and S. Hirose, Mon. Not. R. Astron. Soc. 462, 3710 (2016); arXiv:1608.01321 [astro-ph.HE].

  16. S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  17. J. F. Hawley and S. A. Balbus, Astrophys. J. 376, 223 (1991).

    Article  ADS  Google Scholar 

  18. J. P. Williams and L. A. Cieza, Ann. Rev. Astron. Astrophys. 49, 67 (2011); arXiv:1103.0556 [astro-ph.GA].

  19. E. I. Vorobyov, A. M. Skliarevskii, V. G. Elbakyan, Y. Pavlyuchenkov, V. Akimkin, and M. Guedel, Astron. Astrophys. 627, A154 (2019); arXiv:1905.11335 [astro-ph.EP].

  20. A. Natta, L. Testi, and S. Randich, Astron. Astrophys. 452, 245 (2006); arXiv:astro-ph/0602618.

    Article  ADS  Google Scholar 

  21. B. Ercolano, D. Mayr, J. E. Owen, G. Rosotti, and C. F. Manara, Mon. Not. R. Astron. Soc. 439, 256 (2014); arXiv:1312.3154 [astro-ph.SR].

    Article  ADS  Google Scholar 

  22. N. I. Shakura, Sov. Astron. 16, 756 (1972).

    ADS  Google Scholar 

  23. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  24. R. Hueso and T. Guillot, Astron. Astrophys. 442, 703 (2005); arXiv:astro-ph/0506496.

    Article  ADS  Google Scholar 

  25. Y. N. Pavlyuchenkov, A. G. Zhilkin, E. I. Vorobyov, and A. M. Fateeva, Astron. Rep. 59, 133 (2015); arXiv:1502.04835 [astro-ph.GA].

  26. A. Belloche, EAS Publ. Ser. 62, 25 (2013); arXiv:1305.0627 [astro-ph.GA].

  27. A. V. Tutukov and Y. N. Pavlyuchenkov, Astron. Rep. 48, 800 (2004).

    Article  ADS  Google Scholar 

  28. V. S. Safronov, Ann. d’Astrophys. 23, 979 (1960).

    ADS  Google Scholar 

  29. A. Toomre, Astrophys. J. 139, 1217 (1964).

    Article  ADS  Google Scholar 

  30. E. I. Vorobyov and Y. N. Pavlyuchenkov, Astron. Astrophys. 606, A5 (2017); arXiv: 1706.00401 [astro-ph.GA].

Download references

ACKNOWLEDGMENTS

The authors thank the reviewer for valuable comments and constructive suggestions for improving this article.

Funding

The work by L.A. Maksimova was carried out in the framework of the project “Study of stars with exoplanets” under a grant from the Government of the Russian Federation for scientific research conducted under the guidance of leading scientists (agreement no. 075-15-2019-1875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Maksimova.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, L.A., Pavlyuchenkov, Y.N. & Tutukov, A.V. Evolution of a Viscous Protoplanetary Disk with Convectively Unstable Regions. II. Accretion Regimes and Long-Term Dynamics. Astron. Rep. 64, 815–826 (2020). https://doi.org/10.1134/S1063772920110050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920110050

Navigation