Skip to main content
Log in

Physical and Chemical Properties of Galactic Global Clusters with Various Origins Identified from the Gaia DR2 Data

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The differences in the relationships between the physical parameters and the chemical-element abundances in accreted globular star clusters and those formed inside the Galaxy have been investigated. The information on the supposed formation sites of the clusters based on the Gaia DR2 data is borrowed from the literature. Those sources estimate the probability of belonging to the Galactic bulge and disk, as well as to six known events of the merger of dwarf satellite galaxies with the Milky Way, for 151 globular clusters. Orbital elements, initial masses, population types, and ages are taken from the literature; the data on the chemical composition for 69 globular clusters of the Galaxy are taken from the authors’ compiled catalog. It is shown that all metal-poor (\([{\text{Fe/H}}] < - 1.0\)) genetically related globular clusters have high relative abundances of \(\alpha \)‑elements. According to modern views, since type II supernovae release more \(\alpha \)-elements into the interstellar medium with increasing mass, it has been suggested that masses of type II supernovae in the Galaxy were greater than in the accreted galaxies. It is proved that the clusters of the low-energy group, which were considered accreted, are genetically related to a single protogalactic cloud, same as the unstratified clusters UKS 1 and Liller 1, which most likely belong to the bulge. It is shown that not only the lower but also the upper limits of the clusters’ masses decrease with an increase in the average radius of their orbits. The latter fact is explained by a decrease in the masses of emerging clusters with a decrease in the masses of their host galaxies. It is demonstrated that an extremely multicomponent stellar population is observed only in accreted globular clusters with an initial mass >106 \({{M}_{ \odot }}\). It has been suggested that these clusters retained all the matter ejected by their evolved stars, from which new generations of stars formed due to long evolution far from our Galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Ibata, G. Gilmore, and M. Irvin, Nature (London, U.K.) 370, 194 (1994).

    Article  ADS  Google Scholar 

  2. J. T. Mackereth, R. P. Schiavon, J. Pfeffer, C. R. Hayes, et al., Mon. Not. R. Astron. Soc. 482, 3426 (2019).

    Article  ADS  Google Scholar 

  3. A. Helmi, C. Babusiaux, H. H. Koppelman, D. Massari, J. Veljanoski, and A. G. A. Brown, Nature (London, U.K.) 563, 85 (2018).

    Article  ADS  Google Scholar 

  4. D. Massari, H. H. Koppelman, and A. Helmi, Astron. Astrophys. 630, 4 (2019).

    Article  ADS  Google Scholar 

  5. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astron. Rep. 63, 274 (2019).

    Article  ADS  Google Scholar 

  6. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astrophys. Bull. 74, 404 (2019).

    Article  ADS  Google Scholar 

  7. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astrophys. Bull. 75, 21 (2020).

    Article  ADS  Google Scholar 

  8. T. Bensby, S. Feldsing, and I. Lundstrem, Astron. A-strophys. 410, 527 (2003).

    Article  ADS  Google Scholar 

  9. W. E. Harris, Astron. J. 112, 1487 (1996); arX-iv:1012.3224 [astro-ph.GA].

    Article  ADS  Google Scholar 

  10. E. Carretta, in The General Assembly of Galaxy Halos: Structure, Origin and Evolution, Ed. by A. Bragaglia, M. Arnaboldi, M. Rejkuba, and D. Romano, Proc. IAU Symp. 317, 97 (2016).

  11. J. Pritzl, K. A. Venn, and M. Irwin, Astron. J. 130, 2140 (2005).

    Article  ADS  Google Scholar 

  12. K. A. Venn, M. Irwin, M. D. Shetrone, C. A. Tout, V. Hill, and E. Tolstoy, Astron. J. 128, 1177 (2004).

    Article  ADS  Google Scholar 

  13. T. Bensby, S. Feltzing, and M. S. Oey, Astron. Astrophys. 562, 71 (2014).

    Article  ADS  Google Scholar 

  14. D. A. VandenBerg, K. Brogaard, R. Leaman, and L. Casagrande, Astrophys. J. 775, 134 (2013).

    Article  ADS  Google Scholar 

  15. E. Carretta, A. Bragaglia, R. Gratton, V. d’Orazi, and S. Lucatello, Astron. Astrophys. 508, 695 (2009).

    Article  ADS  Google Scholar 

  16. A. F. Marino, A. P. Milone, A. Renzini, F. D’Antona, et al., Mon. Not. R. Astron. Soc. 487, 3815 (2019).

    Article  ADS  Google Scholar 

  17. H. Baumgardt, M. Hilker, A. Sollima, and A. Bellini, Mon. Not. R. Astron. Soc. 482, 5138 (2019).

    Article  ADS  Google Scholar 

  18. T. V. Borkova and V. A. Marsakov, Bull. SAO 54, 61 (2002).

    Google Scholar 

  19. R. Zinn, in The Globular Cluster-Galaxy Connection, Ed. by H. Smith and J. Brodee, ASP Conf. Ser. 48, 38 (1993).

    Google Scholar 

  20. G. S. da Costa and T. E. Armandroff, Astron. J. 109, 253 (1995).

    Article  ADS  Google Scholar 

  21. V. A. Marsakov and T. V. Borkova, Astron. Lett. 32, 545 (2006).

    Article  ADS  Google Scholar 

  22. P. E. Nissen and W. J. Schuster, Astron. Astrophys. 511, L10 (2010).

    Article  ADS  Google Scholar 

  23. J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martinez-Pinedo, and F.-K. Thielemann, arXiv:1901.01410 [astro-ph.HE] (2010).

  24. D. Horta, R. P. Schiavon, J. T. Mackereth, T. C. Beers, et al., Mon. Not. R. Astron. Soc. 493, 3363 (2020).

    Article  ADS  Google Scholar 

  25. C. Travaglio, D. Galli, R. Gallino, M. Busso, F. Ferrini, and O. Straniero, Astrophys. J. 521, 691 (1999).

    Article  ADS  Google Scholar 

  26. J. Köppen, C. Weidner, and P. Kroupa, Mon. Not. R. Astron. Soc. 375, 673 (2007).

    Article  ADS  Google Scholar 

  27. J. Pritzl, K. A. Venn, and M. Irwin, Astron. J. 130, 2140 (2005).

    Article  ADS  Google Scholar 

  28. S. L. J. Gibbons, V. Belokurov, and N. W. Evans, Mon. Not. R. Astron. Soc. 464, 794 (2017).

    Article  ADS  Google Scholar 

  29. H. H. Koppelman, A. Helmi, D. Massari, A. M. Price-Whelan, and T. K. Starkenburg, Astron. Astrophys. 631, L9 (2019).

    Article  ADS  Google Scholar 

  30. M. G. Abadi, J. F. Navarro, M. Steinmetz, and V. R. Eke, Astrophys. J. 591, 499 (2003).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Davide Massari for providing the unpublished ages of the globular clusters and Holger Baumgardt for providing the updated initial globular cluster masses.

Funding

The research was funded by the Southern Federal University, 2020 (Ministry of Science and Higher Education of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Marsakov, V. V. Koval’ or M. L. Gozha.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsakov, V.A., Koval’, V.V. & Gozha, M.L. Physical and Chemical Properties of Galactic Global Clusters with Various Origins Identified from the Gaia DR2 Data. Astron. Rep. 64, 805–814 (2020). https://doi.org/10.1134/S1063772920110062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920110062

Navigation