Skip to main content
Log in

Artificial Intelligence in Materials Modeling and Design

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In recent decades, the use of artificial intelligence (AI) techniques in the field of materials modeling has received significant attention owing to their excellent ability to analyze a vast amount of data and reveal correlations between several complex interrelated phenomena. In this review paper, we summarize recent advances in the applications of AI techniques for numerical modeling of different types of materials. AI techniques such as machine learning and deep learning show great advantages and potential for predicting important mechanical properties of materials and reveal how changes in certain principal parameters affect the overall behavior of engineering materials. Furthermore, in this review, we show that the application of AI techniques can significantly help to improve the design and optimize the properties of future advanced engineering materials. Finally, a perspective on the challenges and prospects of the applications of AI techniques for material modeling is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hilbert M (2016) Big data for development: a review of promises and challenges. Dev Policy Rev 34:135–174. https://doi.org/10.1111/dpr.12142

    Article  Google Scholar 

  2. Zhang X, Pérez-Stable EJ, Bourne PE et al (2017) Big data science: Opportunities and challenges to address minority health and health disparities in the 21st century. Ethnic Dis 27:95. https://doi.org/10.18865/ed.27.2.95

    Article  Google Scholar 

  3. Reed DA, Dongarra J (2015) Exascale computing and big data. Commun ACM 58:56–68. https://doi.org/10.1145/2699414

    Article  Google Scholar 

  4. Wang Y, Widrow B, Zadeh LA et al (2016) Cognitive intelligence: Deep learning, thinking, and reasoning by brain-inspired systems. Int J Cogn Inform Nat Intell 10:1–20. https://doi.org/10.4018/IJCINI.2016100101

    Article  Google Scholar 

  5. Groumpos PP (2019) Artificial intelligence: Issues, challenges, opportunities and threats. In: Conference on creativity in intelligent technologies and data science, Springer, pp 19-33

  6. Xu J, Yang P, Xue S et al (2019) Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet 138:109–124. https://doi.org/10.1007/s00439-019-01970-5

    Article  Google Scholar 

  7. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321. https://doi.org/10.1038/nrg3920

    Article  Google Scholar 

  8. Zhu H (2019) Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol 60:573–589. https://doi.org/10.1146/annurev-pharmtox-010919-023324

    Article  Google Scholar 

  9. Zhang L, Tan J, Han D, Zhu H (2017) From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 22:1680–1685. https://doi.org/10.1016/j.drudis.2017.08.010

    Article  Google Scholar 

  10. Li BH, Hou BC, Yu WT et al (2017) Applications of artificial intelligence in intelligent manufacturing: a review. Front Inform Tech Electron Eng 18:86–96. https://doi.org/10.1631/FITEE.1601885

    Article  Google Scholar 

  11. Ticknor JL (2013) A Bayesian regularized artificial neural network for stock market forecasting. Expert Syst Appl 40:5501–5506. https://doi.org/10.1016/j.eswa.2013.04.013

    Article  Google Scholar 

  12. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260. https://doi.org/10.1126/science.aaa8415

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen C-T, Gu GX (2019) Machine learning for composite materials. MRS Commun 9:1–11. https://doi.org/10.1557/mrc.2019.32

    Article  Google Scholar 

  14. Antony PJ, Manujesh P, Jnanesh NA (2017) Data mining and machine learning approaches on engineering materials—A review. In: IEEE International conference on recent trends in electronics, pp 69–73 IEEE

  15. Dimiduk DM, Holm EA, Niezgoda SR (2018) Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integr Mater Manuf Innov 7:157–172. https://doi.org/10.1007/s40192-018-0117-8

    Article  Google Scholar 

  16. Uddin M, Lee J, Rizvi S, Hamada S (2018) Proposing enhanced feature engineering and a selection model for machine learning processes. Appl Sci 8:646. https://doi.org/10.3390/app8040646

    Article  Google Scholar 

  17. Balachandran PV, Xue D, Theiler J, Hogden J, Gubernatis JE, Lookman T (2018) Importance of feature selection in machine learning and adaptive design for materials. Materials discovery and design. Springer, Cham, pp 59–67

    Google Scholar 

  18. Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinform 2015:1–13. https://doi.org/10.1155/2015/198363

    Article  Google Scholar 

  19. Song Y-Y, Ying L (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiat 27:130. https://doi.org/10.11919/j.issn.1002-0829.215044

    Article  Google Scholar 

  20. Flach PA, Lachiche N (2004) Naive Bayesian classification of structured data. Mach Learn 57:233–269. https://doi.org/10.1023/b:mach.0000039778.69032.ab

    Article  MATH  Google Scholar 

  21. Zhang Z (2016) Introduction to machine learning: k-nearest neighbors. Ann Transl Med. https://doi.org/10.21037/atm.2016.03.37

    Article  Google Scholar 

  22. Seber GA, Lee AJ (2012) Linear regression analysis. John Wiley & Sons, Chichester, England

    MATH  Google Scholar 

  23. Guo H, Wang W (2019) Granular support vector machine: a review. Artif Intell Rev 51:19–32. https://doi.org/10.1007/s10462-017-9555-5

    Article  Google Scholar 

  24. Wilson JR, Lorenz KA (2015) Introduction to binary logistic regression. Modeling binary correlated responses using SAS, SPSS and R. Springer, Cham, pp 3–16

    Chapter  Google Scholar 

  25. Shanmuganathan S (2016) Artificial neural network modelling: An introduction. Artificial neural network modelling. Springer, Cham, pp 1–14

    Chapter  Google Scholar 

  26. Butler KT, Davies DW, Cartwright H et al (2018) Machine learning for molecular and materials science. Nature 559:547. https://doi.org/10.1038/s41586-018-0337-2

    Article  Google Scholar 

  27. Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater 2:16028. https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  28. Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Materiomics 3:159–177. https://doi.org/10.1016/j.jmat.2017.08.002

    Article  Google Scholar 

  29. Bartók AP, De S, Poelking C et al (2017) Machine learning unifies the modeling of materials and molecules. Sci Adv 3:e1701816. https://doi.org/10.1126/sciadv.1701816

    Article  Google Scholar 

  30. Zhao X, Shi X, Zhang S (2015) Facial expression recognition via deep learning. IETE Tech Rev 32:347–355. https://doi.org/10.1080/02564602.2015.1017542

    Article  Google Scholar 

  31. Deng L, Li X (2013) Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process 21:1060–1089. https://doi.org/10.1109/TASL.2013.2244083

    Article  Google Scholar 

  32. Crawford M, Khoshgoftaar TM, Prusa JD et al (2015) Survey of review spam detection using machine learning techniques. J Big Data 2:23. https://doi.org/10.1186/s40537-015-0029-9

    Article  Google Scholar 

  33. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  34. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  35. Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fus 42:146–157. https://doi.org/10.1016/j.inffus.2017.10.006

    Article  Google Scholar 

  36. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen X-W, Lin X (2014) Big data deep learning: challenges and perspectives. IEEE Access 2:514–525. https://doi.org/10.1109/access.2014.2325029

    Article  Google Scholar 

  38. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  39. Lee S, Ha J, Zokhirova M et al (2017) Background information of deep learning for structural engineering. Arch Comput Methods Eng 25:1–9. https://doi.org/10.1007/s11831-017-9237-0

    Article  MathSciNet  MATH  Google Scholar 

  40. Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53:1563–1575. https://doi.org/10.1021/ci400187y

    Article  Google Scholar 

  41. Azimi SM, Britz D, Engstler M et al (2018) Advanced steel microstructural classification by deep learning methods. Sci Rep 8:2128. https://doi.org/10.1038/s41598-018-20037-5

    Article  Google Scholar 

  42. Dimla DE (1999) Application of perceptron neural networks to tool-state classification in a metal-turning operation. Eng Appl Artif Intel 12:471–477. https://doi.org/10.1016/s0952-1976(99)00015-9

    Article  Google Scholar 

  43. Han M, Xi J (2004) Efficient clustering of radial basis perceptron neural network for pattern recognition. Pattern Recogn 37:2059–2067. https://doi.org/10.1016/j.patcog.2004.02.014

    Article  Google Scholar 

  44. Hecht-Nielsen R (1992) Theory of the backpropagation neural network. In Neural networks for perception, Academic Press, pp 65–93.

  45. Prashar P (2014) Neural networks in machine learning. Int J Comput Appl 105:1–3. https://doi.org/10.5120/18442-9812

    Article  Google Scholar 

  46. Wen UP, Lan KM, Shih HS (2009) A review of hopfield neural networks for solving mathematical programming problems. Eur J Oper Res 198:675–687. https://doi.org/10.1016/j.ejor.2008.11.002

    Article  MathSciNet  MATH  Google Scholar 

  47. Aminanto E, Kim K (2016) Deep learning in intrusion detection system: An overview. In: 2016 International research conference on engineering and technology (2016 IRCET), Higher Education Forum, pp

  48. Xu L, Ren JS, Liu C, Jia J (2014) Deep convolutional neural network for image deconvolution. In: Advances in neural information processing systems, pp 1790–1798

  49. Yeo J, Jung GS, Martín-Martínez FJ et al (2018) Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys Scripta 93:053003. https://doi.org/10.1088/1402-4896/aab4e2

    Article  Google Scholar 

  50. Weinberger CR, Tucker GJ (2016) Multiscale materials modeling for nanomechanics. Springer, Berlin Heidelberg

    Book  Google Scholar 

  51. Atif R, Inam F (2016) Modeling and simulation of graphene based polymer nanocomposites: advances in the last decade. Graphene 5:96–142. https://doi.org/10.4236/graphene.2016.52011

    Article  Google Scholar 

  52. Li B, Peco C, Millán D et al (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Meth Eng 102:711–727. https://doi.org/10.1002/nme.4726

    Article  MathSciNet  MATH  Google Scholar 

  53. Knezevic M, Beyerlein IJ (2018) Multiscale modeling of microstructure-property relationships of polycrystalline metals during thermo-mechanical deformation. Adv Eng Mater 20:1700956. https://doi.org/10.1002/adem.201700956

    Article  Google Scholar 

  54. Chen C-T, Martin-Martinez FJ, Jung GS, Buehler MJ (2017) Polydopamine and eumelanin molecular structures investigated with ab initio calculations. Chem Sci 8:1631–1641. https://doi.org/10.1039/C6SC04692D

    Article  Google Scholar 

  55. Park J, Yu BD, Hong S (2015) Van der Waals density functional theory study for bulk solids with BCC, FCC, and diamond structures. Curr Appl Phys 15:885–891. https://doi.org/10.1016/j.cap.2015.03.028

    Article  Google Scholar 

  56. Xin X, Li B, Jung J et al (2015) Ab initio simulation of charge transfer at the semiconductor quantum dot/TiO2 interface in quantum dot-sensitized solar cells. Part Part Syst Char 32:80–90. https://doi.org/10.1002/ppsc.201400111

    Article  Google Scholar 

  57. Damadam M, Shao S, Salehinia I et al (2017) Molecular dynamics simulations of mechanical behavior in nanoscale ceramic–metallic multilayer composites. Mater Res Lett 5:306–313. https://doi.org/10.1080/21663831.2016.1275864

    Article  Google Scholar 

  58. Banerjee D, Nguyen T, Chuang T-J (2016) Mechanical properties of single-walled carbon nanotube reinforced polymer composites with varied interphase’s modulus and thickness: a finite element analysis study. Comp Mater Sci 114:209–218. https://doi.org/10.1016/j.commatsci.2015.12.026

    Article  Google Scholar 

  59. Sun Y, Liew KM (2008) The buckling of single-walled carbon nanotubes upon bending: the higher order gradient continuum and mesh-free method. Comput Methods Appl Mech Eng 197:3001–3013. https://doi.org/10.1016/j.cma.2008.02.003

    Article  MATH  Google Scholar 

  60. Sun Y, Liew KM (2008) Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes. Int J Numer Meth Eng 75:1238–1258. https://doi.org/10.1002/nme.2299

    Article  MATH  Google Scholar 

  61. Wang J, Zhang L, Liew K (2016) A multiscale modeling of CNT-reinforced cement composites. Comput Methods Appl Mech Eng 309:411–433. https://doi.org/10.1016/j.cma.2016.06.019

    Article  MathSciNet  MATH  Google Scholar 

  62. Ping X et al (2012) Free vibration analysis of microtubules based on an atomistic-continuum model. J Sound Vib 331:213–230. https://doi.org/10.1016/j.jsv.2011.08.024

    Article  Google Scholar 

  63. Zhang L, Ademiloye A, Liew K (2017) A multiscale Cauchy-Born meshfree model for deformability of red blood cells parasitized by Plasmodium falciparum. J Mech Phys Solids 101:268–284. https://doi.org/10.1016/j.jmps.2017.01.009

    Article  MathSciNet  Google Scholar 

  64. Ademiloye A, Zhang L, Liew K (2018) A multiscale framework for large deformation modeling of RBC membranes. Comput Methods Appl Mech Eng 329:144–167. https://doi.org/10.1016/j.cma.2017.10.004

    Article  MathSciNet  MATH  Google Scholar 

  65. Movahedi-Rad AV, Keller T, Vassilopoulos AP (2019) Modeling of fatigue behavior based on interaction between time-and cyclic-dependent mechanical properties. Compos Part A-Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2019.05.037

    Article  Google Scholar 

  66. Agrawal A, Choudhary A (2016) Perspective: Materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater 4:053208. https://doi.org/10.1063/1.4946894

    Article  Google Scholar 

  67. Rajan K (2015) Materials informatics: the materials “gene” and big data. Annu Rev Mater Res 45:153–169. https://doi.org/10.1146/annurev-matsci-070214-021132

    Article  Google Scholar 

  68. Mueller T, Kusne AG, Ramprasad R (2016) Machine learning in materials science: recent progress and emerging applications. Rev Comput Chem 29:186–273. https://doi.org/10.1002/9781119148739.ch4

    Article  Google Scholar 

  69. Bock F, Aydin R, Cyron C et al (2019) A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater 6:110. https://doi.org/10.3389/fmats.2019.00110

    Article  Google Scholar 

  70. Ball P (2019) Using artificial intelligence to accelerate materials development. MRS Bull 44:335–344. https://doi.org/10.1557/mrs.2019.113

    Article  Google Scholar 

  71. Lefik M, Boso D, Schrefler B (2009) Artificial neural networks in numerical modelling of composites. Comput Methods Appl Mech Eng 198:1785–1804. https://doi.org/10.1016/j.cma.2008.12.036

    Article  MATH  Google Scholar 

  72. Sha W, Edwards K (2007) The use of artificial neural networks in materials science based research. Mater Design 28:1747–1752. https://doi.org/10.1016/j.matdes.2007.02.009

    Article  Google Scholar 

  73. Kadi HE (2006) Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—A review. Compos Struct 73:1–23. https://doi.org/10.1016/j.compstruct.2005.01.020

    Article  Google Scholar 

  74. Al-Haik MS, Hussaini MY, Rogan CS (2010) Artificial intelligence techniques in simulation of viscoplasticity of polymeric composites. Polym Compos 30:1701–1708. https://doi.org/10.1002/pc.20745

    Article  Google Scholar 

  75. Yousef BF, Mourad A-HI, Hilal-Alnaqbi A (2013) Modeling of the mechanical behavior of polyethylene/polypropylene blends using artificial neural networks. Int J Adv Manuf Tech 64:601–611. https://doi.org/10.1007/s00170-012-4069-4

    Article  Google Scholar 

  76. Balaji N, Jayabal S (2016) Artificial neural network modeling of mechanical behaviors of zea fiber–polyester composites. P I Mech Eng C-J Mec 230:45–55. https://doi.org/10.1177/0954408914539939

    Article  Google Scholar 

  77. Yadollahi MM, Benli A, Demirboga R (2017) Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites. Neural Comput Appl. https://doi.org/10.1007/s00521-015-2159-6

    Article  Google Scholar 

  78. Kopal I, Labaj I, Harničárová M et al (2018) Prediction of the tensile response of carbon black filled rubber blends by artificial neural network. Polymers 10:644. https://doi.org/10.3390/polym10060644

    Article  Google Scholar 

  79. Zeng GS, Hu C, Zou SM et al (2019) BP neural network model for predicting the mechanical performance of a foamed wood-fiber reinforced thermoplastic starch composite. Polym Compos. https://doi.org/10.1002/pc.25252

    Article  Google Scholar 

  80. Pidaparti R, Palakal M (1993) Material model for composites using neural networks. AIAA J 31:1533–1535. https://doi.org/10.2514/3.11810

    Article  Google Scholar 

  81. Trebar M, Susteric Z, Lotric U (2007) Predicting mechanical properties of elastomers with neural networks. Polymer 48:5340–5347. https://doi.org/10.1016/j.polymer.2007.07.030

    Article  Google Scholar 

  82. Jiang ZY, Gyurova L, Zhang Z et al (2008) Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites. Mater Design 29:628–637. https://doi.org/10.1016/j.matdes.2007.02.008

    Article  Google Scholar 

  83. Chen X, Sztandera L, Cartwright HM (2008) A neural network approach to prediction of glass transition temperature of polymers. Int J Intell Syst 23:22–32. https://doi.org/10.1002/int.20256

    Article  Google Scholar 

  84. Min C, Jabeen F, Rasulev B et al (2018) A computational structure-property relationship study of glass transition temperatures for a diverse set of polymers. J Polym Sci Polym Phys. https://doi.org/10.1002/polb.24602

    Article  Google Scholar 

  85. Yu X, Yi B, Liu F, Wang X (2008) Prediction of the dielectric dissipation factor tan δ of polymers with an ANN model based on the DFT calculation. React Funct Polym 68:1557–1562. https://doi.org/10.1016/j.reactfunctpolym.2008.08.009

    Article  Google Scholar 

  86. Mannodi-Kanakkithodi A, Pilania G, Huan TD et al (2016) Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep 6:20952. https://doi.org/10.1038/srep20952

    Article  Google Scholar 

  87. Venkatraman V, Alsberg B (2018) Designing high-refractive index polymers using materials informatics. Polymers 10:103. https://doi.org/10.3390/polym10010103

    Article  Google Scholar 

  88. Park DK, Jang H, Ahn N (2006) Development of bond strength model for FRP plates using back-propagation algorithm. J Appl Polym Sci 100:5119–5127. https://doi.org/10.1002/app.24069

    Article  Google Scholar 

  89. Nasouri K, Bahrambeygi H, Rabbi A et al (2012) Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J Appl Polym Sci 126:127–135. https://doi.org/10.1002/app.36726

    Article  Google Scholar 

  90. Kopal I, Harničárová M, Valíček J, Kušnerová M (2017) Modeling the temperature dependence of dynamic mechanical properties and visco-elastic behavior of thermoplastic polyurethane using artificial neural network. Polymers 9:519. https://doi.org/10.3390/polym9100519

    Article  Google Scholar 

  91. Altinkok N (2006) Use of artificial neural network for prediction of mechanical properties of α-Al2O3 particulate-reinforced Al–Si10Mg alloy composites prepared by using stir casting process. J Compos Mater 40:779–796. https://doi.org/10.1177/0021998305055547

    Article  Google Scholar 

  92. Altinkok N, Koker R (2006) Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks. Mater Design 27:625–631. https://doi.org/10.1016/j.matdes.2005.01.005

    Article  Google Scholar 

  93. Hayajneh M, Hassan AM, Alrashdan A, Mayyas AT (2009) Prediction of tribological behavior of aluminum–copper based composite using artificial neural network. J Alloy Compd 470:584–588. https://doi.org/10.1016/j.jallcom.2008.03.035

    Article  Google Scholar 

  94. Younesi M, Bahrololoom M, Ahmadzadeh M (2010) Prediction of wear behaviors of nickel free stainless steel–hydroxyapatite bio-composites using artificial neural network. Comp Mater Sci 47:645–654. https://doi.org/10.1016/j.commatsci.2009.09.019

    Article  Google Scholar 

  95. Shabani MO, Mazahery A (2011) The ANN application in FEM modeling of mechanical properties of Al–Si alloy. Appl Math Model 35:5707–5713. https://doi.org/10.1016/j.apm.2011.05.008

    Article  Google Scholar 

  96. Varol T, Canakci A, Ozsahin S (2013) Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024–B4C composites produced by powder metallurgy. Compos Part B-Eng 54:224–233. https://doi.org/10.1016/j.compositesb.2013.05.015

    Article  Google Scholar 

  97. Soundararajan R, Ramesh A, Sivasankaran S, Sathishkumar A (2015) Modeling and analysis of mechanical properties of aluminium alloy (A413) processed through squeeze casting route using artificial neural network model and statistical technique. Adv Mater Sci Eng. https://doi.org/10.1155/2015/714762

    Article  Google Scholar 

  98. Saravanan S, Senthilkumar M (2015) Prediction of tribological behaviour of rice husk ash reinforced aluminum alloy matrix composites using artificial neural network. Russ J Non-Ferr Metals 56:97–106. https://doi.org/10.3103/S1067821215010174

    Article  Google Scholar 

  99. Radhakrishnan G, Kesavan C, Ramesh V, Anandan T (2016) Application of artificial neural network (ANN) for predicting the wear behaviour of Al 2219-SiCp composite. Appl Mech Mater, Trans Tech Publ 852:397–401

    Article  Google Scholar 

  100. Akbari MK, Shirvanimoghaddam K, Hai Z et al (2017) Nano TiB2 and TiO2 reinforced composites: a comparative investigation on strengthening mechanisms and predicting mechanical properties via neural network modeling. Ceram Int 43:16799–16810. https://doi.org/10.1016/j.ceramint.2017.09.077

    Article  Google Scholar 

  101. Arif S, Alam MT, Ansari AH et al (2018) Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique. Mater Res Expr 5:056506. https://doi.org/10.1088/2053-1591/aabec8

    Article  Google Scholar 

  102. Idrisi AH, Mourad AHI (2019) Wear performance analysis of aluminum matrix composites using artificial neural network. In: 2019 Advances in science and engineering technology international conferences (ASET), IEEE, pp 1–5

  103. Altinkok N, Koker R (2004) Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al–Si–Mg)-aluminium matrix composites. Mater Design 25:595–602. https://doi.org/10.1016/j.matdes.2004.02.014

    Article  Google Scholar 

  104. Koker R, Altinkok N, Demir A (2007) Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater Design 28:616–627. https://doi.org/10.1016/j.matdes.2005.07.021

    Article  Google Scholar 

  105. Jayaraman M, Sivasubramanian R, Balasubramanian V, Lakshminarayanan A (2008) Prediction of tensile strength of friction stir welded A356 cast aluminium alloy using response surface methodology and artificial neural network. J Manuf Sci Prod 9:45–60. https://doi.org/10.1515/ijmsp.2008.9.1-2.45

    Article  Google Scholar 

  106. Chen G, Wang H, Bezold A et al (2019) Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network. Compos Struct 223:110951. https://doi.org/10.1016/j.compstruct.2019.110934

    Article  Google Scholar 

  107. Kavimani V, Prakash KS (2017) Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach. J Phys Chem Solids 110:409–419. https://doi.org/10.1016/j.jpcs.2017.06.028

    Article  Google Scholar 

  108. Genel K, Kurnaz S, Durman M (2003) Modeling of tribological properties of alumina fiber reinforced zinc–aluminum composites using artificial neural network. Mater Sci Eng A-Struct 363:203–210. https://doi.org/10.1016/s0921-5093(03)00623-3

    Article  Google Scholar 

  109. Gupta V, Kwatra N, Ray S (2007) Artificial neural network modeling of creep behavior in a rotating composite disc. Eng Computation 24:151–164. https://doi.org/10.1108/02644400710729545

    Article  MATH  Google Scholar 

  110. Maleki E, Reza Kashyzadeh K (2017) Effects of the hardened nickel coating on the fatigue behavior of CK45 steel: experimental, finite element method, and artificial neural network modeling. Iran J Mater Sci Eng 14:81–99. https://doi.org/10.22068/ijmse.14.4.81

    Article  Google Scholar 

  111. Zhang M, Sun C-N, Zhang X et al (2019) High cycle fatigue life prediction of laser additive manufactured stainless steel: a machine learning approach. Int J Fatigue 128:105194. https://doi.org/10.1016/j.ijfatigue.2019.105194

    Article  Google Scholar 

  112. Sivasankaran S, Narayanasamy R, Ramesh T, Prabhakar M (2009) Analysis of workability behavior of Al–SiC P/M composites using backpropagation neural network model and statistical technique. Comp Mater Sci 47:46–59. https://doi.org/10.1016/j.commatsci.2009.06.013

    Article  Google Scholar 

  113. Ji G, Li F, Li Q et al (2010) Prediction of the hot deformation behavior for Aermet100 steel using an artificial neural network. Comp Mater Sci 48:626–632. https://doi.org/10.1016/j.commatsci.2010.02.031

    Article  Google Scholar 

  114. Kautz EJ, Hagen AR, Johns JM, Burkes DE (2019) A machine learning approach to thermal conductivity modeling: a case study on irradiated uranium-molybdenum nuclear fuels. Comp Mater Sci 161:107–118. https://doi.org/10.1016/j.commatsci.2019.01.044

    Article  Google Scholar 

  115. Yekta PV, Honar FJ, Fesharaki MN (2019) Modelling of hysteresis loop and magnetic behaviour of Fe-48Ni alloys using artificial neural network coupled with genetic algorithm. Comp Mater Sci 159:349–356. https://doi.org/10.1016/j.commatsci.2018.12.025

    Article  Google Scholar 

  116. Rao H, Mukherjee A (1996) Artificial neural networks for predicting the macromechanical behaviour of ceramic-matrix composites. Comp Mater Sci 5:307–322. https://doi.org/10.1016/0927-0256(95)00002-x

    Article  Google Scholar 

  117. Rao HS, Ghorpade VG, Mukherjee A (2006) A genetic algorithm based back propagation network for simulation of stress–strain response of ceramic-matrix-composites. Comput Struct 84:330–339. https://doi.org/10.1016/j.compstruc.2005.09.022

    Article  Google Scholar 

  118. Qiye W, Huaiwu Z, Peixin Z, Xiangdong J (2005) Improved artificial neural network for data analysis and property prediction in slag glass–ceramic. J Am Ceram Soc 88:1765–1769. https://doi.org/10.1111/j.1551-2916.2005.00355.x

    Article  Google Scholar 

  119. Scott D, Coveney P, Kilner J et al (2007) Prediction of the functional properties of ceramic materials from composition using artificial neural networks. J Eur Ceram Soc 27:4425–4435. https://doi.org/10.1016/j.jeurceramsoc.2007.02.212

    Article  Google Scholar 

  120. Xu Y, Zhu Y, Xiao G, Ma C (2014) Application of artificial neural networks to predict corrosion behavior of Ni–SiC composite coatings deposited by ultrasonic electrodeposition. Ceram Int 40:5425–5430. https://doi.org/10.1016/j.ceramint.2013.10.125

    Article  Google Scholar 

  121. Guo D, Li L, Nan C et al (2003) Modeling and analysis of the electrical properties of PZT through neural networks. J Eur Ceram Soc 23:2177–2181. https://doi.org/10.1016/s0955-2219(03)00020-7

    Article  Google Scholar 

  122. Deng L, Feng B, Zhang Y (2018) An optimization method for multi-objective and multi-factor designing of a ceramic slurry: combining orthogonal experimental design with artificial neural networks. Ceram Int 44:15918–15923. https://doi.org/10.1016/j.ceramint.2018.06.010

    Article  Google Scholar 

  123. Mukherjee A, Biswas SN (1997) Artificial neural networks in prediction of mechanical behavior of concrete at high temperature. Nucl Eng Des 178:1–11. https://doi.org/10.1016/s0029-5493(97)00152-0

    Article  Google Scholar 

  124. Ahn N, Jang H, Park DK (2007) Presumption of shear strength of steel fiber reinforced concrete beam using artificial neural network model. J Appl Polym Sci 103:2351–2358. https://doi.org/10.1002/app.25121

    Article  Google Scholar 

  125. Słoński M (2010) A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks. Comput Struct 88:1248–1253. https://doi.org/10.1016/j.compstruc.2010.07.003

    Article  Google Scholar 

  126. Madandoust R, Bungey JH, Ghavidel R (2012) Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Comp Mater Sci 51:261–272. https://doi.org/10.1016/j.commatsci.2011.07.053

    Article  Google Scholar 

  127. Keshtegar B, Bagheri M, Yaseen ZM (2019) Shear strength of steel fiber-unconfined reinforced concrete beam simulation: application of novel intelligent model. Compos Struct 212:230–242. https://doi.org/10.1016/j.compstruct.2019.01.004

    Article  Google Scholar 

  128. Nazari A, Sanjayan JG (2015) Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine. Ceram Int 41:12164–12177. https://doi.org/10.1016/j.ceramint.2015.06.037

    Article  Google Scholar 

  129. Ramadan Suleiman A, Nehdi M (2017) Modeling self-healing of concrete using hybrid genetic algorithm–artificial neural network. Materials 10:135. https://doi.org/10.3390/ma10020135

    Article  Google Scholar 

  130. Shabani MO, Mazahery A (2012) Application of finite element model and artificial neural network in characterization of Al matrix nanocomposites using various training algorithms. Metall Mater Trans A 43:2158–2165. https://doi.org/10.1007/s11661-011-1040-1

    Article  Google Scholar 

  131. Vijayaraghavan V, Garg A, Wong C et al (2014) A molecular dynamics based artificial intelligence approach for characterizing thermal transport in nanoscale material. Thermochim Acta 594:39–49. https://doi.org/10.1016/j.tca.2014.08.029

    Article  Google Scholar 

  132. Alber M, Tepole AB, Cannon WR et al (2019) Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit Med 2:1–11. https://doi.org/10.1038/s41746-019-0193-y

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was fully supported by grants from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China (Project No. 9042644, CityU 11205518), and National Natural Science Foundation of China (NSFC) (Grant No. 51378448).

Author information

Authors and Affiliations

Authors

Contributions

J.S.H. performed the work. J.X.L. initiated the research topic. A.S.A. and K.M.L. supervised the work. J.S.H., J.X.L., A.S.A. and K.M.L. wrote the manuscript.

Corresponding author

Correspondence to K. M. Liew.

Ethics declarations

Conflict of interest statement

The authors confirm that there is no financial and personal conflict of interest associated with the present work.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J.S., Liew, J.X., Ademiloye, A.S. et al. Artificial Intelligence in Materials Modeling and Design. Arch Computat Methods Eng 28, 3399–3413 (2021). https://doi.org/10.1007/s11831-020-09506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09506-1

Navigation