Skip to main content
Log in

Uniqueness of Critical Points of the Anisotropic Isoperimetric Problem for Finite Perimeter Sets

  • Original Article
  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Given an elliptic integrand of class \(\mathscr {C}^{2,\alpha }\), we prove that finite unions of disjoint open Wulff shapes with equal radii are the only volume-constrained critical points of the anisotropic surface energy among all sets with finite perimeter and reduced boundary almost equal to its closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. As in [18, 1.10] the symbol \(\bigodot ^2 X\) denotes the vectorspace of bilinear maps of the type \(X \times X \rightarrow \mathbf {R}^{}\).

  2. As in [18, 1.7.4] we write \(\mathbf {O}^*({n},{k})\) for the set of \(\alpha \in {{\,\mathrm{Hom}\,}}( \mathbf {R}^{n}, \mathbf {R}^{k})\) such that \(\alpha ^* \circ \alpha = {({{\,\mathrm{im}\,}}\alpha ^*)}_\natural \) and \(\alpha \circ \alpha ^* = \mathrm {id}_{ \mathbf {R}^{k}}\).

References

  1. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large. V. Vestnik Leningrad. Univ 13(19), 5–8, 1958

    MathSciNet  Google Scholar 

  2. Allard, W.K.: An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled. Proceedings of Symposia in Pure Mathematics. Geometric Measure Theory and the Calculus of Variations, 44, 1986.

  3. Allard, W.K.: On the first variation of a varifold. Ann. Math. 2(95), 417–491, 1972

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, New York 2000

    MATH  Google Scholar 

  5. Brothers, J.E., Morgan, F.: The isoperimetric theorem for general integrands. Michigan Math. J. 41(3), 419–431, 1994

    Article  MathSciNet  Google Scholar 

  6. Delgadino, M.G., Maggi, F., Mihaila, C., Neumayer , R.: Bubbling with \(L^2\)-almost constant mean curvature and an Alexandrov-type theorem for crystals. Arch. Rat. Mech. Anal. 230(3), 1131–1177, 2018

    Article  Google Scholar 

  7. Delgadino, M.G., Maggi, F.: Alexandrov’s theorem revisited. Version 1 ofArxiv: 1711.07690v1, 2017.

  8. Delgadino, M.G., Maggi, F.: Alexandrov’s theorem revisited. Anal. PDE 12(6), 1613–1642, 2019

    Article  MathSciNet  Google Scholar 

  9. De Philippis, G., De Rosa, A., Ghiraldin, F.: Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies. Comm. Pure Appl. Math. 71(6), 1123–1148, 2018

  10. De Philippis, G., De Rosa, A., Ghiraldin, F.: Existence results for minimizers of parametric elliptic functionals. J. Geom. Anal. 30(2), 1450–1465, 2020

  11. De Philippis, G., De Rosa, A., Hirsch, J.: The Area Blow Up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete Contin. Dyn. Syst. - A. 39(12), 7031–7056, 2019

  12. De Philippis, G., Maggi, F.: Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law. Arch. Rat. Mech. Anal. 216(2), 473–568, 2015

  13. De Rosa, A.: Minimization of anisotropic energies in classes of rectifiable varifolds. SIAM J. Math. Anal. 50(1), 162–181, 2018

  14. De Rosa, A., Gioffrè, S.: Absence of bubbling phenomena for non convex anisotropic nearly umbilical and quasi Einstein hypersurfaces. arXiv e-prints, page arXiv:1803.09118, Mar 2018.

  15. De Rosa, A., Gioffrè, S.: Quantitative stability for anisotropic nearly umbilical hypersurfaces. J. Geom. Anal. 29(3), 2318–2346, 2019

  16. De Rosa, A., Kolasiński, S.: Equivalence of the ellipticity conditions for geometric variational problems. Commun. Pure Appl. Math. 2020. https://doi.org/10.1002/cpa.21890

  17. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491, 1959

    Article  MathSciNet  Google Scholar 

  18. Federer, H. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969D).

  19. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119(1–2), 125–136, 1991

    Article  MathSciNet  Google Scholar 

  20. Giga, Y.: Surface evolution equations: a level set method. Hokkaido Univ. Tech. Rep. Ser. Math. 71, 1, 2002

    MathSciNet  MATH  Google Scholar 

  21. Giga, Y., Zhai, J.: Uniqueness of constant weakly anisotropic mean curvature immersion of the sphere \(S^2\) in \({\mathbb{R}}^3\). Adv. Differ. Equ. 14(7–8), 601–619, 2009

    MATH  Google Scholar 

  22. He, Y., Li, H., Ma, H., Ge, J.: Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures. Indiana Univ. Math. J. 58(2), 853–868, 2009

    Article  MathSciNet  Google Scholar 

  23. Heveling, M., Hug, D., Last, G.: Does polynomial parallel volume imply convexity? Math. Ann. 328(3), 469–479, 2004

    Article  MathSciNet  Google Scholar 

  24. Hug, D., Last, G., Weil, W.: A local Steiner-type formula for general closed sets and applications. Math. Z. 246(1–2), 237–272, 2004

    Article  MathSciNet  Google Scholar 

  25. Koiso, M.: Uniqueness of stable closed non-smooth hypersurfaces with constant anisotropic mean curvature. arXiv e-prints, page arXiv:1903.03951, 2019.

  26. Koiso, M., Palmer, B.: Anisotropic umbilic points and Hopf’s theorem for surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 59(1), 79–90, 2010

    Article  MathSciNet  Google Scholar 

  27. Lang, S.: Linear Algebra. Undergraduate Texts in Mathematics., 3rd edn. Springer, New York 1987

    Book  Google Scholar 

  28. Maggi, F.: Critical and almost-critical points in isoperimetric problems. Oberwolfach Rep. 35, 34–37, 2018

    Google Scholar 

  29. Menne, U., Santilli, M.: A geometric second-order-rectifiable stratification for closed subsets of Euclidean space. Annali Scuola Normale Superiore-Classw di Scienze 19(3):1185–1198

  30. Menne, U.: Pointwise differentiability of higher order for sets. Ann. Global Anal. Geom. 55(3), 591–621, 2019

    Article  MathSciNet  Google Scholar 

  31. Milman, V.D., Schechtman, Gideon. Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer, Berlin, 1986. With an appendix by M. Gromov.

  32. Montiel, S., Ros, A.: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. In Differential geometry, volume 52 of Pitman Monogr. Surveys Pure Appl. Math., pp. 279–296. Longman Sci. Tech., Harlow, 1991.

  33. Morgan, F.: Planar Wulff shape is unique equilibrium. Proc. Amer. Math. Soc. 133(3), 809–813, 2005

    Article  MathSciNet  Google Scholar 

  34. Palmer, B.: Stability of the Wulff shape. Proc. Amer. Math. Soc. 126(12), 3661–3667, 1998

    Article  MathSciNet  Google Scholar 

  35. Palmer, B.: Stable closed equilibria for anisotropic surface energies: surfaces with edges. J. Geom. Mech. 4(1), 89–97, 2012

    Article  MathSciNet  Google Scholar 

  36. Tyrrell Rockafellar, R.: Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, 1970.

  37. Santilli, M.: Fine properties of the curvature of arbitrary closed sets. Ann. Mat. Pura Appl. (4), 199, (2020), no. 4, 1431–1456.

  38. Santilli, M.: Rectifiability and approximate differentiability of higher order for sets. Indiana Univ. Math. J. 68, 1013–1046, 2019

    Article  MathSciNet  Google Scholar 

  39. Santilli, M.: The Heintze-Karcher inequality for sets of finite perimeter and bounded mean curvature. Version 1 ofarXiv:1908.05952v1, Aug 2019.

  40. Santilli, M.: Normal bundle and Almgren’s geometric inequality for singular varieties of bounded mean curvature. Bull. Math. Sci. 10(1), 2050008, 24, 2020.

  41. Schätzle, R.: Quadratic tilt-excess decay and strong maximum principle for varifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3(1):171–231, 2004.

  42. Taylor, J.E.: Existence and structure of solutions to a class of nonelliptic variational problems. In Symposia Mathematica, Vol. XIV (Convegno di Teoria Geometrica dell’Integrazione e Varietà Minimali, INDAM, Roma, Maggio 1973), pp. 499–508. 1974.

  43. Taylor, J.E.: Unique structure of solutions to a class of nonelliptic variational problems. In Differential geometry (Proceedings of Symposium, Pure. Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 1, pp. 419–427, 1975.

  44. Wulff, G.: Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Kristallflächen. Z. Kristallogr. 34, 449–530, 1901

    Google Scholar 

Download references

Acknowledgements

The first author has been partially supported by the NSF DMS Grant No. 1906451. The second author was supported by the National Science Centre Poland grant no. 2016/23/D/ST1/01084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Rosa.

Additional information

Communicated by I. Fonseca

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rosa, A., Kolasiński, S. & Santilli, M. Uniqueness of Critical Points of the Anisotropic Isoperimetric Problem for Finite Perimeter Sets. Arch Rational Mech Anal 238, 1157–1198 (2020). https://doi.org/10.1007/s00205-020-01562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01562-y

Navigation