Skip to main content
Log in

Monotone Sobolev Functions in Planar Domains: Level Sets and Smooth Approximation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove that almost every level set of a Sobolev function in a planar domain consists of points, Jordan curves, or homeomorphic copies of an interval. For monotone Sobolev functions in the plane we have the stronger conclusion that almost every level set is an embedded 1-dimensional topological submanifold of the plane. Here monotonicity is in the sense of Lebesgue: the maximum and minimum of the function in an open set are attained at the boundary. Our result is an analog of Sard’s theorem, which asserts that for a \(C^2\)-smooth function in a planar domain almost every value is a regular value. As an application, using the theory of p-harmonic functions, we show that monotone Sobolev functions in planar domains can be approximated uniformly and in the Sobolev norm by smooth monotone functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Bianchini, S., Crippa, G.: Structure of level sets and Sard-type properties of Lipschitz maps. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 863–902, 2013

    MathSciNet  MATH  Google Scholar 

  2. Aikawa, H., Kilpeläinen, T., Shanmugalingam, N., Zhong, X.: Boundary Harnack principle for \(p\)-harmonic functions in smooth Euclidean domains. Potential Anal. 26(3), 281–301, 2007

    Article  MathSciNet  Google Scholar 

  3. Ball, J.M.: Singularities and computation of minimizers for variational problems, Foundations of Computational Mathematics, pp. 1–20. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2001

  4. Bates, S.M.: Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Am. Math. Soc. 117(1), 279–283, 1993

    MathSciNet  MATH  Google Scholar 

  5. Bojarski, B., Hajłasz, P., Strzelecki, P.: Sard’s theorem for mappings in Hölder and Sobolev spaces. Manuscr. Math. 118, 383–397, 2005

    Article  Google Scholar 

  6. Bourgain, J., Korobkov, M., Kristensen, J.: On the Morse–Sard property and level sets of Sobolev and BV functions. Rev. Mat. Iberoam. 29, 1–23, 2013

    Article  MathSciNet  Google Scholar 

  7. Brezis, H.: Functional analysis. Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011

  8. de Pascale, L.: The Morse–Sard theorem in Sobolev spaces. Indiana Univ. Math. J. 50(3), 1371–1386, 2001

    Article  MathSciNet  Google Scholar 

  9. Dubovitskii, A.Ya: On the structure of level sets of differentiable mappings of an \(n\)-dimensional cube into a \(k\)-dimensional cube. Izv. Akad. Nauk SSSR Ser. Mat. 21(3), 371–408, 1957

    MathSciNet  Google Scholar 

  10. Eilenberg, S., Harrold Jr., O.G.: Continua of finite linear measure. I. Am. J. Math. 65, 137–146, 1943

    Article  MathSciNet  Google Scholar 

  11. Evans, L.C.: A new proof of local \(C^{1,\alpha }\) regularity for solutions of certain degenerate elliptic P.D.E. J. Differ. Equ. 45(3), 356–373, 1982

    Article  ADS  Google Scholar 

  12. Federer, H.: Geometric Measure Theory, Grundlehren der Mathematischen Wissenschaften, vol. 153. Springer, New York 1969

    Google Scholar 

  13. Figalli, A.: A simple proof of the Morse–Sard theorem in Sobolev spaces. Proc. Am. Math. Soc. 136, 3657–3681, 2008

    Article  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin 2001. Reprint of the 1998 edition

    Book  Google Scholar 

  15. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York 1993

    MATH  Google Scholar 

  16. Hajłasz, P., Malý, J.: Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat. 40(2), 245–274, 2002

    Article  MathSciNet  Google Scholar 

  17. Hencl, S., Pratelli, A.: Diffeomorphic approximation of \(W^{1,1}\) planar Sobolev homeomorphisms. J. Eur. Math. Soc. (JEMS) 20(3), 597–656, 2018

    Article  MathSciNet  Google Scholar 

  18. Iwaniec, T., Kovalev, L.V., Onninen, J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Ration. Mech. Anal. 201(3), 1047–1067, 2011

    Article  MathSciNet  Google Scholar 

  19. Iwaniec, T., Kovalev, L.V., Onninen, J.: Hopf differentials and smoothing Sobolev homeomorphisms, 2012. Int. Math. Res. Not. 14, 3256–3277, 2012

    MATH  Google Scholar 

  20. Konyagin, S.V.: On the level sets of Lipschitz functions. Tatra Mt. Math. Publ. 2, 51–59, 1993

    MathSciNet  MATH  Google Scholar 

  21. Lebesgue, H.: Sur le problème de Dirichlet. Rend. Circ. Mat. Palermo 27, 371–402, 1907

    Article  Google Scholar 

  22. Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Graduate Texts in Mathematics, vol. 218. Springer, New York, 2013

  23. Lehrbäck, J., Hardy, P.: Pointwise Hardy inequalities and uniformly fat sets. Proc. Am. Math. Soc. 136(6), 2193–2200, 2008

    Article  MathSciNet  Google Scholar 

  24. Lewis, J.L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32(6), 849–858, 1983

    Article  MathSciNet  Google Scholar 

  25. Lewis, J.L., Nyström, K.: Regularity and free boundary regularity for the \(p\) Laplacian in Lipschitz and \(C^1\) domains Ann. Acad. Sci. Fenn. Math. 33(2), 523–548, 2008

    MathSciNet  MATH  Google Scholar 

  26. Manfredi, J.J.: \(p\)-harmonic functions in the plane. Proc. Am. Math. Soc. 103(2), 473–479, 1988

    MathSciNet  MATH  Google Scholar 

  27. Manfredi, J.J.: Weakly monotone functions. J. Geom. Anal. 4(2), 393–402, 1994

    Article  MathSciNet  Google Scholar 

  28. Moore, R.L.: Concerning triods in the plane and the junction points of plane continua. Proc. Natl. Acad. Sci. U.S.A. 14(1), 85–88, 1928

    Article  ADS  Google Scholar 

  29. Malý, J., Swanson, D., Ziemer, W.P.: The co-area formula for Sobolev mappings. Trans. Am. Math. Soc. 355(2), 477–492, 2003

    Article  MathSciNet  Google Scholar 

  30. Mulholland, H .P.: On the total variation of a function of two variables. Proc. Lond. Math. Soc. (2) 46, 290–311, 1940

    Article  MathSciNet  Google Scholar 

  31. Munkres, James R.: Topology: A First Course. Prentice-Hall Inc, Englewood Cliffs 1975

    MATH  Google Scholar 

  32. Newman, M.H.A.: Elements of the Topology of Plane Sets of Points, 2nd edn. Cambridge University Press, London 1951

    MATH  Google Scholar 

  33. Norton, A.: A critical set with nonnull image has large Hausdorff dimension. Trans. Am. Math. Soc. 296(1), 367–376, 1986

    Article  MathSciNet  Google Scholar 

  34. Ntalampekos, D.: Potential theory on Sierpiński carpets, Lecture Notes in Mathematics, Springer, Cham, vol. 2268, 2020

  35. Pommerenke, Ch: Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, vol. 299. Springer, Berlin 1992

    Book  Google Scholar 

  36. Rajala, K.: Uniformization of two-dimensional metric surfaces. Invent. Math. 207(3), 1301–1375, 2017

    Article  ADS  MathSciNet  Google Scholar 

  37. Rajala, K., Romney, M.: Reciprocal lower bound on modulus of curve families in metric surfaces. Ann. Acad. Sci. Fenn. Math. 44(2), 681–692, 2019

    Article  MathSciNet  Google Scholar 

  38. Sard, A.: The measure of the critical values of differentiable maps. Bull. Am. Math. Soc. 48(12), 883–890, 1942

    Article  MathSciNet  Google Scholar 

  39. Semmes, S.: Some elementary aspects of Hausdorff measure and dimension, Preprint arXiv:1008.2637, (2010)

  40. Ural’ceva, N.N.: Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7, 184–222, 1968

  41. Viro, O.: 1-Manifolds. Bull. Manifold Atlas 2013

  42. Whitney, H.: A function not constant on a connected set of critical points. Duke Math. J. 1(4), 514–517, 1935

    Article  MathSciNet  Google Scholar 

  43. Whyburn, G.T.: Analytic Topology, vol. 28. American Mathematical Society Colloquium Publications, American Mathematical Society, New York, 1942

  44. Whyburn, G.T.: Topological Analysis, vol. 23. Princeton Mathematical Series, Princeton University Press, Princeton, N. J., 1958

  45. Willard, S.: General Topology. Addison-Wesley Publishing Co., Reading 1970

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Tadeusz Iwaniec for a motivating discussion, Matthew Romney for his comments on the manuscript, and the anonymous referees for their useful and thoughtful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Ntalampekos.

Additional information

Communicated by A. Figalli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by NSF Grant DMS-2000096

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntalampekos, D. Monotone Sobolev Functions in Planar Domains: Level Sets and Smooth Approximation. Arch Rational Mech Anal 238, 1199–1230 (2020). https://doi.org/10.1007/s00205-020-01563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01563-x

Navigation