Skip to main content
Log in

Enhanced Cadaverine Production by Engineered Escherichia coli Using Soybean Residue Hydrolysate (SRH) as a Sole Nitrogen Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An economical source of nitrogen is one of the major limiting factors for sustainable cadaverine production. The utilization potential of soybean residue for enhanced cadaverine production by engineered Escherichia coli DFC1001 was investigated in this study. The SRH from soybean residue could get the protein extraction rate (PE) of 67.51% and the degree of protein hydrolysis (DH) of 22.49%. The protein molecular weights in SRH were mainly distributed in 565 Da (72.28%) and 1252 Da (17.11%). These proteins with small molecular weights and concentrated molecular weight distribution were favorable to be transformed by engineered E. coli DFC1001, and then SRH replaced completely yeast powder as an only nitrogen source for cadaverine production. The maximum cadaverine productivity was 0.52 g/L/h, achieved with a constant speed feeding strategy in the optimized SRH fermentation medium containing an initial total sugar concentration of 30 g/L and exogenous added minerals, which indicated that soybean residue could be a potential feedstock for economic cadaverine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, H. T., Baritugo, K. A., Oh, Y. H., Hyun, S. M., Khang, T. U., Kang, K. H., Jung, S. H., Song, B. K., Park, K., Kim, I. K., Lee, M. O., Kam, Y., Hwang, Y. T., Park, S. J., & Joe, J. C. (2018). Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustainable Chemistry & Engineering, 6(4), 5296–5305.

    Article  CAS  Google Scholar 

  2. Qian, Z. G., Xia, X. X., & Lee, S. Y. (2011). Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnology and Bioengineering, 108(1), 93–103.

    Article  CAS  Google Scholar 

  3. Kind, S., Neubauer, S., Becker, J., Yamamoto, M., Volkert, M., von Abendroth, G., Zelder, O., & Wittmann, C. (2014). From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 25, 113–123.

    Article  CAS  Google Scholar 

  4. Schneider, J., Niermann, K., & Wendisch, V. F. (2011). Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. Journal of Biotechnology, 154(2-3), 191–198.

    Article  CAS  Google Scholar 

  5. Kwak, D. H., Lim, H. G., Yang, J., Seo, S. W., & Jung, G. Y. (2017). Synthetic redesign of Escherichia coli for cadaverine production from galactose. Biotechnology for Biofuels, 10(1), 20.

    Article  Google Scholar 

  6. Ma, W. C., Chen, K. Q., Li, Y., Hao, N., Wang, X., & Ouyang, P. K. (2017). Advances in cadaverine bacterial production and its applications. Engineering, 3(3), 308–317.

    Article  Google Scholar 

  7. Buschke, N., Schroder, H., & Wittmann, C. (2011). Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnology Journal, 6(3), 306–317.

    Article  CAS  Google Scholar 

  8. Dhar, K. S., Wendisch, V. F., & Nampoothiri, K. M. (2016). Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. Journal of Biotechnology, 230, 63–71.

    Article  CAS  Google Scholar 

  9. Alvarado-Cuevas, Z. D., Acevedo, L. G. O., Salas, J. T. O., & De Leon-Rodriguez, A. (2013). Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate. New Biotechnology, 30(6), 585–590.

    Article  CAS  Google Scholar 

  10. Zhou, X. P., Wang, F., Hu, H. W., Yang, L., Guo, P. H., & Xiao, B. (2011). Assessment of sustainable biomass resource for energy use in China. Biomass & Bioenergy, 35(1), 1–11.

    Article  Google Scholar 

  11. Nguyen, T. H., Ra, C. H., Sunwoo, I. Y., Sukwong, P., Jeong, G. T., & Kim, S. K. (2018). Bioethanol production from soybean residue via separate hydrolysis and fermentation. Applied Biochemistry and Biotechnology, 184(2), 513–523.

    Article  CAS  Google Scholar 

  12. Vong, W. C., & Liu, S. Q. (2016). Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science & Technology, 52, 139–147.

    Article  CAS  Google Scholar 

  13. Loman, A. A., Islam, S. M. M., & Ju, L. K. (2018). Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation. Applied Microbiology and Biotechnology, 102(2), 641–653.

    Article  CAS  Google Scholar 

  14. Jiang, K., Tang, B., Wang, Q., Xu, Z. Q., Sun, L., Ma, J. J., Li, S., Xu, H., & Lei, P. (2019). The bio-processing of soybean dregs by solid state fermentation using a poly gamma-glutamic acid producing strain and its effect as feed additive. Bioresource Technology, 291, 121841.

    Article  CAS  Google Scholar 

  15. Huang, X. D., Zhao, J. W., Xu, Q. X., Li, X. M., Wang, D. B., Yang, Q., Liu, Y., & Tao, Z. L. T. (2019). Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue. Bioresource Technology, 274, 430–438.

    Article  CAS  Google Scholar 

  16. Yoshii, H., Furuta, T., Maeda, H., & Mori, H. (1996). Hydrolysis kinetics of okara and characterization of its water-soluble polysaccharides. Bioscience, Biotechnology, and Biochemistry, 60(9), 1406–1409.

    Article  CAS  Google Scholar 

  17. Li, S. H., Gao, A., Dong, S., Chen, Y., Sun, S., Lei, Z. F., & Zhang, Z. Y. (2017). Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. International Journal of Biological Macromolecules, 96, 26–34.

    Article  CAS  Google Scholar 

  18. Florencio, C., Badino, A. C., & Farinas, C. S. (2016). Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse. Bioresource Technology, 221, 172–180.

    Article  CAS  Google Scholar 

  19. He, X., Chen, K. Q., Li, Y., Wang, Z., Zhang, H., Qian, J., & Ouyang, P. K. (2015). Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess and Biosystems Engineering, 38(8), 1615–1622.

    Article  CAS  Google Scholar 

  20. Thakker, C., San, K. Y., & Bennett, G. N. (2013). Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresource Technology, 130, 398–405.

    Article  CAS  Google Scholar 

  21. Ying, H. X., He, X., Li, Y., Chen, K. Q., & Ouyang, P. K. (2014). Optimization of culture conditions for enhanced lysine production using engineered. Bioscience Biotechnology and Biochemistry, 60, 1406–1409.

    Google Scholar 

  22. Campos, V. M., Silva, F. L. F., Oliveira, J. P. S., Ribeiro, L. P. D., Matos, W. O., & Lopes, G. S. (2019). Investigation of a rapid infrared heating assisted mineralization of soybean matrices for trace element analysis. Food Chemistry, 280, 96–102.

    Article  CAS  Google Scholar 

  23. He, X., Miao, Y. L., Jiang, X. J., Xu, Z. D., & Ouyang, P. K. (2010). Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Applied Biochemistry and Biotechnology, 160(8), 2449–2457.

    Article  CAS  Google Scholar 

  24. Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. London: Elsevier Applied Science Publishers.

    Google Scholar 

  25. Chen, C. C., Lee, T. T., Bin Hsu, C., Huang, C. W., & Yu, B. (2011). Associations of allergenic soybean proteins with piglet skin allergic reaction and application of polyclonal antibodies. Animal Production Science, 51(11), 1008–1014.

    Article  CAS  Google Scholar 

  26. Nyo, M. K., & Nguyen, L. T. (2019). Value-addition of defatted peanut cake by proteolysis: effects of proteases and degree of hydrolysis on functional properties and antioxidant capacity of peptides. Waste and Biomass Valorization, 10(5), 1251–1259.

    Article  CAS  Google Scholar 

  27. Gomez, A. O., Rubio, J. P., Moral, M. T., Morgado, B. R., & Jimenez, P. C. (2017). Okara valorization process by fermentation with Bacillus licheniformis: obtention of hydrolytic enzymes, bioactive compounds, and protein hydrolysates. Journal of Biotechnology, 256, S62–S63.

    Article  Google Scholar 

  28. Zhao, H. F., Wan, C. Y., Zhao, M. M., Lei, H. J., & Mo, F. (2014). Effects of soy protein hydrolysates on the growth and fermentation performances of brewer’s yeast. International Journal of Food Science and Technology, 49(9), 2015–2022.

    Article  CAS  Google Scholar 

  29. Ekwealor, I. A., & Obeta, J. A. N. (2007). Effect of vitamins and bivalent metals on lysine yield in Bacillus megaterium. African Journal of Biotechnology, 6, 1348–1351.

    CAS  Google Scholar 

  30. Brand, E., Junne, S., & Neubauer, P. (2010). Divalent ion composition and demand for E. coli in high cell density cultivations. Journal of Biotechnology, 150, S402–SS02.

    Google Scholar 

  31. Bizukojc, M., Pawlowska, B., & Ledakowicz, S. (2007). Supplementation of the cultivation media with B-group vitamins enhances lovastatin biosynthesis by Aspergillus terreus. Journal of Biotechnology, 127(2), 258–268.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Jiangsu postdoctoral research support program (Grant Nos. 2019K242), the National Nature Science Foundation of China (Grant Nos. 21576134), the National Key Research and Development Program of China (2016YFA0204300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Li, M., Li, H. et al. Enhanced Cadaverine Production by Engineered Escherichia coli Using Soybean Residue Hydrolysate (SRH) as a Sole Nitrogen Source. Appl Biochem Biotechnol 193, 533–543 (2021). https://doi.org/10.1007/s12010-020-03444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03444-1

Keywords

Navigation