Skip to main content
Log in

Estimating Knee Joint Load Using Acoustic Emissions During Ambulation

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantifying joint load in activities of daily life could lead to improvements in mobility for numerous people; however, current methods for assessing joint load are unsuitable for ubiquitous settings. The aim of this study is to demonstrate that joint acoustic emissions contain information to estimate this internal joint load in a potentially wearable implementation. Eleven healthy, able-bodied individuals performed ambulation tasks under varying speed, incline, and loading conditions while joint acoustic emissions and essential gait measures—electromyography, ground reaction forces, and motion capture trajectories—were collected. The gait measures were synthesized using a neuromuscular model to estimate internal joint contact force which was the target variable for subject-specific machine learning models (XGBoost) trained based on spectral, temporal, cepstral, and amplitude-based features of the joint acoustic emissions. The model using joint acoustic emissions significantly outperformed (p < 0.05) the best estimate without the sounds, the subject-specific average load (MAE = 0.31 ± 0.12 BW), for both seen (MAE = 0.08 ± 0.01 BW) and unseen (MAE = 0.21 ± 0.05 BW) conditions. This demonstrates that joint acoustic emissions contain information that correlates to internal joint contact force and that information is consistent such that unique cases can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alexander, N., and H. Schwameder. Lower limb joint forces during walking on the level and slopes at different inclinations. Gait Posture 45:137–142, 2016.

    PubMed  Google Scholar 

  2. Amin, S., N. Luepongsak, C. A. McGibbon, M. P. LaValley, D. E. Krebs, and D. T. Felson. Knee adduction moment and development of chronic knee pain in elders. Arthritis Care Res. 51:371–376, 2004.

    Google Scholar 

  3. Ancillao, A., S. Tedesco, J. Barton, and B. O’Flynn. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors 18:2564, 2018.

    Google Scholar 

  4. Baratta, R., M. Solomonow, B. H. Zhou, D. Letson, R. Chuinard, and R. D’Ambrosia. Muscular coactivation: The role of the antagonist musculature in maintaining knee stability. Am. J. Sports Med. 16:113–122, 1988.

    CAS  PubMed  Google Scholar 

  5. Baudet, A., C. Morisset, P. d’Athis, J.-F. Maillefert, J.-M. Casillas, P. Ornetti, and D. Laroche. Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA): a new proposal. PLoS ONE 9:e102098, 2014.

    PubMed  PubMed Central  Google Scholar 

  6. Bolus, N. B., H. K. Jeong, D. C. Whittingslow, and O. T. Inan. A glove-based form factor for collecting joint acoustic emissions: design and validation. Sensors (Basel) 19(12):2683, 2019.

    Google Scholar 

  7. Carter, D. R., G. S. Beaupré, N. J. Giori, and J. A. Helms. Mechanobiology of Skeletal Regeneration. Clin. Orthop. Relat. Res. 355:S41, 1998.

    Google Scholar 

  8. Chen, T., and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.

  9. D’Lima, D. D., B. J. Fregly, S. Patil, N. Steklov, and C. W. Colwell. Knee joint forces: prediction, measurement, and significance. Proc. Inst. Mech. Eng. H 226:95–102, 2012.

    PubMed  PubMed Central  Google Scholar 

  10. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    PubMed  Google Scholar 

  11. Giannakopoulos, T., and A. Pikrakis. Introduction to Audio Analysis: A MATLAB® Approach. New York: Academic Press, p. 266, 2014.

    Google Scholar 

  12. Guilak, F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 25:815–823, 2011.

    PubMed  PubMed Central  Google Scholar 

  13. Haight, D. J., Z. F. Lerner, W. J. Board, and R. C. Browning. A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults. J. Orthop. Res. 32:324–330, 2014.

    PubMed  Google Scholar 

  14. Hermens, H. J., B. Freriks, R. Merletti, D. Stegeman, J. Blok, G. Rau, C. Disselhorst-Klug, and G. Hägg. European recommendations for surface electromyography. Roessingh research and development 8:13–54, 1999.

    Google Scholar 

  15. Hersek, S., M. B. Pouyan, C. N. Teague, M. N. Sawka, M. L. Millard-Stafford, G. F. Kogler, P. Wolkoff, and O. T. Inan. Acoustical Emission Analysis by Unsupervised Graph Mining: A Novel Biomarker of Knee Health Status. IEEE Trans. Biomed. Eng. 65:1291–1300, 2018.

    PubMed  Google Scholar 

  16. Hewett, T. E., G. D. Myer, K. R. Ford, R. S. Heidt, A. J. Colosimo, S. G. McLean, A. J. van den Bogert, M. V. Paterno, and P. Succop. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 33:492–501, 2005.

    PubMed  Google Scholar 

  17. Hoang, H. X., C. Pizzolato, L. E. Diamond, and D. G. Lloyd. Subject-specific calibration of neuromuscular parameters enables neuromusculoskeletal models to estimate physiologically plausible hip joint contact forces in healthy adults. J. Biomech. 80:111–120, 2018.

    PubMed  Google Scholar 

  18. Hooker, G. Diagnostics and Extrapolation in Machine Learning. Stanford: Stanford University, 2004.

    Google Scholar 

  19. Ibitoye, M. O., N. A. Hamzaid, A. K. Abdul Wahab, N. Hasnan, S. O. Olatunji, and G. M. Davis. Estimation of electrically-evoked knee torque from mechanomyography using support vector regression. Sensors (Basel) 16(7):1115, 2016.

    Google Scholar 

  20. Imani Nejad, Z., K. Khalili, S. H. Hosseini Nasab, P. Schütz, P. Damm, A. Trepczynski, W. R. Taylor, and C. R. Smith. The capacity of generic musculoskeletal simulations to predict knee joint loading using the CAMS-knee datasets. Ann. Biomed. Eng. 48:1430–1440, 2020.

    PubMed  PubMed Central  Google Scholar 

  21. Jeong, H.-K., M. BaranPouyan, D. C. Whittingslow, V. Ganti, and O. T. Inan. Quantifying the effects of increasing mechanical stress on knee acoustical emissions using unsupervised graph mining. IEEE Trans. Neural Syst. Rehabil. Eng. 26:594–601, 2018.

    PubMed  PubMed Central  Google Scholar 

  22. Konrath, J. M., A. Karatsidis, H. M. Schepers, G. Bellusci, M. de Zee, and M. S. Andersen. Estimation of the knee adduction moment and joint contact force during daily living activities using inertial motion capture. Sensors 19:1681, 2019.

    Google Scholar 

  23. Lenton, G. K., P. J. Bishop, D. J. Saxby, T. L. A. Doyle, C. Pizzolato, D. Billing, and D. G. Lloyd. Tibiofemoral joint contact forces increase with load magnitude and walking speed but remain almost unchanged with different types of carried load. PLoS ONE 13(11):e0206859, 2018.

    PubMed  PubMed Central  Google Scholar 

  24. Lerner, Z. F., D. J. Haight, M. S. DeMers, W. J. Board, and R. C. Browning. The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling. J. Appl. Biomech. 30:197–205, 2014.

    PubMed  Google Scholar 

  25. Maly, M. R., S. M. Robbins, P. W. Stratford, T. B. Birmingham, and J. P. Callaghan. Cumulative knee adductor load distinguishes between healthy and osteoarthritic knees—a proof of principle study. Gait Posture 37:397–401, 2013.

    PubMed  Google Scholar 

  26. Mantoan, A., and M. Reggiani. BOPS v0.9. Zenodo, 2015.https://doi.org/10.5281/zenodo.31053

  27. Mantoan, A., C. Pizzolato, M. Sartori, Z. Sawacha, C. Cobelli, and M. Reggiani. MOtoNMS: a MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation. Source Code Biol. Med. 10:12, 2015.

    PubMed  PubMed Central  Google Scholar 

  28. McCoy, G. F., J. D. McCrea, D. E. Beverland, W. G. Kernohan, and R. A. Mollan. Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report. J. Bone Jt. Surg. Br. 69:288–293, 1987.

    CAS  Google Scholar 

  29. Molinaro, D. D., A. S. King, and A. J. Young. Biomechanical analysis of common solid waste collection throwing techniques using OpenSim and an EMG-assisted solver. J. Biomech. 104:109704, 2020.

    PubMed  Google Scholar 

  30. Pizzolato, C., D. G. Lloyd, M. Sartori, E. Ceseracciu, T. F. Besier, B. J. Fregly, and M. Reggiani. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. 48:3929–3936, 2015.

    PubMed  PubMed Central  Google Scholar 

  31. Reddy, N. P., B. M. Rothschild, M. Mandal, V. Gupta, and S. Suryanarayanan. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia. Ann. Biomed. Eng. 23:78–84, 1995.

    CAS  PubMed  Google Scholar 

  32. Sartori, M., D. Farina, and D. G. Lloyd. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47:3613–3621, 2014.

    PubMed  Google Scholar 

  33. Sasaki, K., and R. R. Neptune. Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 43:2780–2784, 2010.

    PubMed  PubMed Central  Google Scholar 

  34. Saxby, D. J., L. Modenese, A. L. Bryant, P. Gerus, B. Killen, K. Fortin, T. V. Wrigley, K. L. Bennell, F. M. Cicuttini, and D. G. Lloyd. Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture 49:78–85, 2016.

    PubMed  Google Scholar 

  35. Schwameder, H., E. Lindenhofer, and E. Müller. Effect of walking speed on lower extremity joint loading in graded ramp walking. Sports Biomech. 4:227–243, 2005.

    PubMed  Google Scholar 

  36. Semiz, B., S. Hersek, D. C. Whittingslow, L. A. Ponder, S. Prahalad, and O. T. Inan. Using knee acoustical emissions for sensing joint health in patients with juvenile idiopathic arthritis: a pilot study. IEEE Sens. J. 18:9128–9136, 2018.

    PubMed  PubMed Central  Google Scholar 

  37. Shark, L.-K., H. Chen, and J. Goodacre. Discovering differences in acoustic emission between healthy and osteoarthritic knees using a four-phase model of sit-stand-sit movements. Open Med. Inform. J/ 4:116–125, 2010.

    Google Scholar 

  38. Stetter, B. J., F. C. Krafft, S. Ringhof, T. Stein, and S. Sell. A machine learning and wearable sensor based approach to estimate external knee flexion and adduction moments during various locomotion tasks. Front. Bioeng. Biotechnol. 8:9, 2020.

    PubMed  PubMed Central  Google Scholar 

  39. Stetter, B. J., S. Ringhof, F. C. Krafft, S. Sell, and T. Stein. Estimation of knee joint forces in sport movements using wearable sensors and machine learning. Sensors 19:3690, 2019.

    Google Scholar 

  40. Töreyin, H., H. K. Jeong, S. Hersek, C. N. Teague, and O. T. Inan. Quantifying the consistency of wearable knee acoustical emission measurements during complex motions. IEEE J. Biomed. Health Inform. 20:1265–1272, 2016.

    PubMed  Google Scholar 

  41. Vanrenterghem, J., N. J. Nedergaard, M. A. Robinson, and B. Drust. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 47:2135–2142, 2017.

    PubMed  Google Scholar 

  42. Walter, J. P., D. D. D’Lima, C. W. Colwell, and B. J. Fregly. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J. Orthop. Res. 28:1348–1354, 2010.

    PubMed  PubMed Central  Google Scholar 

  43. Whittingslow, D. C., H.-K. Jeong, V. G. Ganti, N. J. Kirkpatrick, G. F. Kogler, and O. T. Inan. Acoustic emissions as a non-invasive biomarker of the structural health of the knee. Ann. Biomed. Eng. 48:225–235, 2020.

    PubMed  Google Scholar 

  44. Wimmer, M. A., and T. P. Andriacchi. Tractive forces during rolling motion of the knee: Implications for wear in total knee replacement. J. Biomech. 30:131–137, 1997.

    CAS  PubMed  Google Scholar 

  45. Winby, C. R., D. G. Lloyd, T. F. Besier, and T. B. Kirk. Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42:2294–2300, 2009.

    CAS  PubMed  Google Scholar 

  46. Wouda, F. J., M. Giuberti, G. Bellusci, E. Maartens, J. Reenalda, B.-J. F. van Beijnum, and P. H. Veltink. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors. Front. Physiol. 9:218, 2018.

    PubMed  PubMed Central  Google Scholar 

  47. Youn, W., and J. Kim. Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography. Med. Biol. Eng. Comput. 48:1149–1157, 2010.

    PubMed  Google Scholar 

  48. Zajac, F. E., R. R. Neptune, and S. A. Kautz. Biomechanics and muscle coordination of human walking: Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232, 2002.

    PubMed  Google Scholar 

  49. Zheng, N., G. S. Fleisig, R. F. Escamilla, and S. W. Barrentine. An analytical model of the knee for estimation of internal forces during exercise. J. Biomech. 31:963–967, 1998.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported in part by the National Science Foundation (NSF) / National Institutes of Health Smart and Connected Health Program under Grant No. 1R01EB023808 and the NSF NRT Traineeship Program Grant No. 1545287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keaton L. Scherpereel.

Ethics declarations

Conflict of interest

None of the authors had any financial or personal conflict of interest with regard to this study.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherpereel, K.L., Bolus, N.B., Jeong, H.K. et al. Estimating Knee Joint Load Using Acoustic Emissions During Ambulation. Ann Biomed Eng 49, 1000–1011 (2021). https://doi.org/10.1007/s10439-020-02641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02641-7

Keywords

Navigation