Skip to main content
Log in

A semi-analytical isogeometric analysis for wave dispersion in functionally graded plates immersed in fluids

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The semi-analytical finite element (SAFE) method is widely used for studying properties of guided waves along composite waveguides. However, evaluating the modes associated to high wave numbers requires important mesh refinements and may significantly increase the computational cost. This paper presents a semi-analytical isogeometric analysis (SAIGA) to calculate the dispersion relation of functionally graded or multilayer plates coupling with fluids. High-order elements based on non-uniform B-splines (NURBS) basis functions are used. Several numerical examples are then studied for different problems in order to assess the efficiency of proposed method: (i) homogeneous plates; (ii) functionally graded plates; (iii) composite plates (with strong contrast of rigidity between layers); (iv) fluid-immersed plates. The results obtained are compared with the ones derived from analytical approaches and by the conventional SAFE method using Lagrange polynomials. For all cases, the dispersion curves evaluated by using enriched-NURBS basis functions achieve a significant better precision than using conventional Lagrangian functions (for the same number of degrees of freedom or the same order of shape functions), especially for the higher modes. The continuity of the stress shape modes at the interfaces is also shown to be much improved by using SAIGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bartoli, I., Marzani, A., di Scalea, F.L., Viola, E.: Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vib. 295(3), 685–707 (2006)

    Google Scholar 

  2. Bazilevs, Y., Akkerman, I.: Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J. Comput. Phys. 229(9), 3402–3414 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bazilevs, Y., Beirao da Veiga, L., Cottrell, J.A., Hughes, T.J., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Model. Methods Appl. Sci. 16(07), 1031–1090 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bernard, A., Lowe, M., Deschamps, M.: Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 110(1), 186–196 (2001)

    Google Scholar 

  5. Carcione, J.M.: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, vol. 38. Elsevier, Amsterdam (2007)

    Google Scholar 

  6. Castaings, M., Lowe, M.: Finite element model for waves guided along solid systems of arbitrary section coupled to infinite solid media. J. Acoust. Soc. Am. 123(2), 696–708 (2008)

    Google Scholar 

  7. Cottrell, J., Reali, A., Bazilevs, Y., Hughes, T.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41), 5257–5296 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Cottrell, J., Hughes, T., Reali, A.: Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196(41), 4160–4183 (2007)

    MATH  Google Scholar 

  9. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  10. Dedé, L., Jäggli, C., Quarteroni, A.: Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation. Comput. Methods Appl. Mech. Eng. 284, 320–348 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Duan, W., Kirby, R.: Guided wave propagation in buried and immersed fluid-filled pipes: application of the semi analytic finite element method. Comput. Struct. 212, 236–247 (2019)

    Google Scholar 

  12. Echter, R., Oesterle, B., Bischoff, M.: A hierarchic family of isogeometric shell finite elements. Comput. Methods Appl. Mech. Eng. 254, 170–180 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Fan, Z., Lowe, M., Castaings, M., Bacon, C.: Torsional waves propagation along a waveguide of arbitrary cross section immersed in a perfect fluid. J. Acoust. Soc. Am. 124(4), 2002–2010 (2008)

    Google Scholar 

  14. Gravenkamp, H., Birk, C., Van, J.: Modeling ultrasonic waves in elastic waveguides of arbitrary cross-section embedded in infinite solid medium. Comput. Struct. 149, 61–71 (2015)

    Google Scholar 

  15. Gravenkamp, H., Natarajan, S., Dornisch, W.: On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems. Comput. Methods Appl. Mech. Eng. 315, 867–880 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Hayashi, T., Inoue, D.: Calculation of leaky Lamb waves with a semi-analytical finite element method. Ultrasonics 54(6), 1460–1469 (2014)

    Google Scholar 

  17. Hayashi, T., Tamayama, C., Murase, M.: Wave structure analysis of guided waves in a bar with an arbitrary cross-section. Ultrasonics 44(1), 17–24 (2006)

    Google Scholar 

  18. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, Chelmsford (2012)

    Google Scholar 

  19. Hughes, T., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49), 4104–4124 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Hughes, T.J., Evans, J.A., Reali, A.: Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Joseph, R., Li, L., Haider, M.F., Giurgiutiu, V.: Hybrid SAFE-GMM approach for predictive modeling of guided wave propagation in layered media. Eng. Struct. 193, 194–206 (2019)

    Google Scholar 

  22. Kalkowski, M.K., Rustighi, E., Waters, T.P.: Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method. Comput. Struct. 173, 174–186 (2016)

    Google Scholar 

  23. Kalkowski, M.K., Muggleton, J.M., Rustighi, E.: Axisymmetric semi-analytical finite elements for modelling waves in buried/submerged fluid-filled waveguides. Comput. Struct. 196, 327–340 (2018)

    Google Scholar 

  24. Kaminski, M.: On the dual iterative stochastic perturbation-based finite element method in solid mechanics with gaussian uncertainties. Int. J. Numer. Methods Eng. 104, 1038–1060 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Kim, S., Pasciak, J.: The computation of resonances in open systems using a perfectly matched layer. Math. Comput. 78(267), 1375–1398 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Han, Q., Liang, Y., Xu, G.: Numerical investigation of dispersive behaviors for helical thread waveguides using the semi-analytical isogeometric analysis method. Ultrasonics 83, 126–136 (2018)

    Google Scholar 

  27. Loveday, P.W.: Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49(3), 298–300 (2009)

    Google Scholar 

  28. Lowe, M., Pavlakovic., B.: DISPERSE. Users Manual (2013)

  29. Mazzotti, M., Marzani, A., Bartoli, I., Viola, E.: Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method. Int. J. Solids Struct. 49(18), 2359–2372 (2012)

    Google Scholar 

  30. Mazzotti, M., Bartoli, I., Marzani, A., Viola, E.: A coupled SAFE-2.5 D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section. Ultrasonics 53(7), 1227–1241 (2013)

    Google Scholar 

  31. Mazzotti, M., Miniaci, M., Bartoli, I.: A numerical method for modeling ultrasonic guided waves in thin-walled waveguides coupled to fluids. Comput. Struct. 212, 248–256 (2019)

    Google Scholar 

  32. Na, W.B., Kundu, T.: Underwater pipeline inspection using guided waves. J. Press. Vessel Technol. 124(2), 196–200 (2002)

    Google Scholar 

  33. Nguyen, T.N., Ngo, T.D., Nguyen–Xuan, H.: A novel three–variable shear deformation plate formulation: Theory and isogeometric implementation. Comput. Methods Appl. Mech. Eng. 326, 376–401 (2017)

  34. Nguyen, K.L., Treyssede, F., Hazard, C.: Numerical modeling of three-dimensional open elastic waveguides combining semi-analytical finite element and perfectly matched layer methods. J. Sound Vib. 344, 158–178 (2015)

    Google Scholar 

  35. Nguyen, L.B., Thai, C.H., Zenkour, A.M., Nguyen-Xuan, H.: An isogeometric Bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates. Int. J. Mech. Sci. 157–158, 165–183 (2019)

    Google Scholar 

  36. Nguyen, V.H., Naili, S.: Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method. Int. J. Numer. Methods Biomed. Eng. 28(8), 861–876 (2012)

    MathSciNet  Google Scholar 

  37. Nguyen, V.H., Naili, S.: Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study. Comput. Methods Biomech. Biomed. Eng. 16(9), 963–974 (2013)

    Google Scholar 

  38. Nguyen, V.H., Abdoulatuf, A., Desceliers, C., Naili, S.: A probabilistic study of reflection and transmission coefficients of random anisotropic elastic plates. Wave Motion 64, 103–118 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Nguyen, V.H., Tran, T.N., Sacchi, M.D., Naili, S., Le, L.H.: Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method. Comput. Biol. Med. 87, 371–381 (2017)

    Google Scholar 

  40. Park, C.B., Miller, R.D., Xia, J.: Multichannel analysis of surface waves. Geophysics 64(3), 800–808 (1999)

    Google Scholar 

  41. Pereira, D., Haiat, G., Fernandes, J., Belanger, P.: Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method. J. Acoust. Soc. Am. 141(4), 2538–2547 (2017)

    Google Scholar 

  42. Piegl, L., Tiller, W.: The NURBS book. Springer, Berlin (2012)

    MATH  Google Scholar 

  43. Rose, J.L.: Ultrasonic Guided Waves in Solid Media. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  44. Su, Z., Ye, L., Lu, Y.: Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295(3–5), 753–780 (2006)

    Google Scholar 

  45. Teixeira, F., Chew, W.C.: Complex space approach to perfectly matched layers: a review and some new developments. Int. J. Numer. Model. Electron. Netw. Devices Fields 13(5), 441–455 (2000)

    MATH  Google Scholar 

  46. Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T., Rabczuk, T.: Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach. Int. J. Numer. Meth. Eng. 91(6), 571–603 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Thai, C.H., Kulasegaram, S., Tran, L.V., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)

    Google Scholar 

  48. Tjahjowidodo, T., et al.: A direct method to solve optimal knots of b-spline curves: an application for non-uniform B-spline curves fitting. PLoS ONE 12(3), e0173857 (2017)

    Google Scholar 

  49. Treyssede, F.: Spectral element computation of high-frequency leaky modes in three-dimensional solid waveguides. J. Comput. Phys. 314, 341–354 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Wang, D., Liu, W., Zhang, H.: Novel higher order mass matrices for isogeometric structural vibration analysis. Comput. Methods Appl. Mech. Eng. 260, 92–108 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Willberg, C., Duczek, S., Perez, J.V., Schmicker, D., Gabbert, U.: Comparison of different higher order finite element schemes for the simulation of Lamb waves. Comput. Methods Appl. Mech. Eng. 241, 246–261 (2012)

    MATH  Google Scholar 

  52. Zuo, P., Fan, Z.: SAFE-PML approach for modal study of waveguides with arbitrary cross sections immersed in inviscid fluid. J. Sound Vib. 406, 181–196 (2017)

    Google Scholar 

  53. Zuo, P., Yu, X., Fan, Z.: Numerical modeling of embedded solid waveguides using SAFE-PML approach using a commercially available finite element package. NDT E Int. 90, 11–23 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu-Hieu Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyfaddini, F., Nguyen-Xuan, H. & Nguyen, VH. A semi-analytical isogeometric analysis for wave dispersion in functionally graded plates immersed in fluids. Acta Mech 232, 15–32 (2021). https://doi.org/10.1007/s00707-020-02818-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02818-0

Navigation