Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spitzer’s Solar System studies of comets, centaurs and Kuiper belt objects

Abstract

In its 16 years of scientific measurements, the Spitzer Space Telescope performed ground-breaking and key infrared measurements of Solar System objects near and far. Targets ranged from the smallest planetesimals to the giant planets; Spitzer helped us to reshape our understanding of these objects while also laying the groundwork for future infrared space-based observations like those to be undertaken by the James Webb Space Telescope in the 2020s. In this Review Article, we describe how Spitzer advanced our knowledge of Solar System formation and evolution through observations of small outer Solar System planetesimals—that is, comets, centaurs and Kuiper belt objects (KBOs). Relics from the early formation era of our Solar System, these objects hold important information about the processes that created them.We group Spitzer’s key contributions into three broad classes: characterization of new Solar System objects (comets D/ISON 2012 S1, C/2016 R2 and 1I/‘Oumuamua); large population surveys of known objects (comets, centaurs and KBOs); and compositional studies through spectral measurements of body surfaces and emitted materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The current paradigm of planetary system formation.
Fig. 2: Spitzer ‘Blue’ and ‘Red’ imaging of comets.
Fig. 3: Cumulative size distribution.
Fig. 4: Spitzer/IRS spectra of comets.
Fig. 5: Examples of Spitzer observations of comet trails dominated by large particles.
Fig. 6: Spitzer-derived Centaur diameters as compared to those derived from other measurement methods.
Fig. 7: Spitzer-thermal measurements of two active centaurs.
Fig. 8: Geometric albedo of TNOs based on MIPS thermal observations.
Fig. 9: Colours of TNOs measured using IRAC.

Similar content being viewed by others

References

  1. Werner, M. W. et al. The Spitzer Space Telescope Mission. Astrophys. J. Suppl. 154, 1–9 (2004).

    ADS  Google Scholar 

  2. Gehrz, R. D. et al. The NASA Spitzer Space Telescope. Rev. Sci. Instrum. 78, 011302 (2007).

    ADS  Google Scholar 

  3. Werner, M. & Eisenhardt, P. in More Things in the Heavens: How Infrared Astronomy Is Expanding Our View of the Universe (ed. Yao, J. & Werneck, A.) Ch. 1 (Princeton Univ. Press, 2019).

  4. Fulton, B. J. et al. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    ADS  Google Scholar 

  5. DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    ADS  Google Scholar 

  6. Cruikshank, D. P. Solar System observations with Spitzer Space Telescope: preliminary results. Adv. Space Res. 36, 1070–1073 (2005).

    ADS  Google Scholar 

  7. Fernandez, Y. R. et al. Proc. IAU Symp. 229: Asteroids Comets Meteors (eds Lazzaro, D. et al.) 121–131 (Cambridge Univ. Press, 2006).

  8. Gehrz, R. D. et al. Infrared observations of comets with the Spitzer Space Telescope. Adv. Space Res. 38, 2031–2038 (2006).

    ADS  Google Scholar 

  9. Werner, M. et al. First fruits of the Spitzer Space Telescope: galactic and Solar System studies. Annu. Rev. Astron. Astrophys. 44, 269–321 (2006).

    ADS  Google Scholar 

  10. Trilling, D. E. et al. Spitzer’s Solar System studies of asteroids, planets and the zodiacal cloud. Nat. Astron. https://doi.org/10.1038/s41550-020-01221-y (2020).

  11. Lisse, C. M. et al. The nucleus of comet Hyakutake (C/1996 B2). Icarus 140, 189–204 (1999).

    ADS  Google Scholar 

  12. Harris, A. A thermal model for near-Earth asteroids. Icarus 131, 291–301 (1998).

    ADS  Google Scholar 

  13. Fernandez, Y. R. et al. Thermal properties, sizes, and size distribution of Jupiter-family cometary nuclei. Icarus 226, 1138–1170 (2013).

    ADS  Google Scholar 

  14. Kelley, M. S. P. et al. The persistent activity of Jupiter-family comets at 3–7 AU. Icarus 225, 475–494 (2013).

    ADS  Google Scholar 

  15. Lamy, P. L., Toth, I., Fernandez, Y. R. & Weaver, H. A. in Comets II (eds Festou, M. C. et al.) 223–264 (Univ. Arizona Press, 2004).

  16. Meech, K. J. et al. Comet nucleus size distributions from HST and Keck telescopes. Icarus 170, 463–491 (2004).

    ADS  Google Scholar 

  17. Singer, K. N. et al. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363, 955–959 (2019).

    ADS  Google Scholar 

  18. Lisse, C. M. et al. Comets sourced by KBOs — comparison of SFDs derived from Spitzer/Wise JFC imaging and Pluto and Charon KBO cratering rates. In 50th Lunar Planetary Science Conf. 50, 2132 (abstr.) (2019).

  19. Hsieh, H. H., Jewitt, D. & Fernandez, Y. R. The strange case of 133P/Elst–Pizarro: a comet among the asteroids. Astron. J. 127, 2997–3017 (2004).

    ADS  Google Scholar 

  20. Hsieh, H. H., Jewitt, D. & Fernandez, Y. R. Albedos of main-belt comets 133P/Elst–Pizarro and 176P/LINEAR. Astrophys. J. Lett. 694, L111–L114 (2009).

    ADS  Google Scholar 

  21. Hsieh, H. H. & Jewitt, D. A population of comets in the main asteroid belt. Science 312, 561–563 (2006).

    ADS  Google Scholar 

  22. Jewitt, D. The active asteroids. Astron. J. 143, 66 (2012).

    ADS  Google Scholar 

  23. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 10–17 (2004).

    ADS  Google Scholar 

  24. Mommert, M. et al. The discovery of cometary activity in near-Earth asteroid (3552) Don Quixote. Astrophys J. 781, 25 (2014).

    ADS  Google Scholar 

  25. Mommert, M. et al. Recurrent cometary activity in near-Earth object (3552) Don Quixote. Planet. Sci. J. 1, 12 (2020).

    Google Scholar 

  26. Fernandez, Y. R. et al. Analysis of POSS images of comet–asteroid transition object 107P/1949 W1 (Wilson–Harrington). Icarus 128, 114–126 (1997).

    ADS  Google Scholar 

  27. Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 18–24 (2004).

    ADS  Google Scholar 

  28. Kelley, M. S. et al. A Spitzer study of comets 2P/Encke, 67P/Churyumov–Gerasimenko, and C/2001 HT50 (LINEAR-NEAT). Astrophys. J. 651, 1256–1271 (2006).

    ADS  Google Scholar 

  29. Woodward, C. E., Kelley, M. S., Bockelée-Morvan, D. & Gehrz, R. D. Water in comet C/2003 K4 (LINEAR) with Spitzer. Astrophys. J. 671, 1065–1074 (2007).

    ADS  Google Scholar 

  30. Woodward, C. E. et al. Dust in comet C/2007 N3 (Lulin). Astron. J. 141, 181 (2011).

    ADS  Google Scholar 

  31. Crovisier, J. et al. The spectrum of comet Hale–Bopp (C/1995 O1) observed with the infrared space observatory at 2.9 astronomical units from the Sun. Science 275, 1904–1907 (1997).

    ADS  Google Scholar 

  32. Wooden, D. H. et al. Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale–Bopp) pre- and postperihelion. Astrophys. J. 517, 1034–1058 (1999).

    ADS  Google Scholar 

  33. Lisse, C. M. et al. Spitzer spectral observations of the deep impact ejecta. Science 313, 635–640 (2006).

    ADS  Google Scholar 

  34. Lisse, C. M., Kraemer, K. E., Nuth, J. A., Li, A. & Joswiak, D. Comparison of the composition of the Tempel 1 ejecta to the dust in comet C/Hale Bopp 1995 O1 and YSO HD 100546. Icarus 191, 223–240 (2007).

    ADS  Google Scholar 

  35. Reach, W. T., Vaubaillon, J., Kelley, M. S., Lisse, C. M. & Sykes, M. V. Distribution and properties of fragments and debris from the split comet 73P/Schwassmann–Wachmann 3 as revealed by Spitzer Space Telescope. Icarus 203, 571–588 (2009).

    ADS  Google Scholar 

  36. Sitko, M. L. et al. Infrared spectroscopy of comet 73P/Schwassmann–Wachmann 3 using the Spitzer Space Telescope. Astron. J. 142, 80 (2011).

    ADS  Google Scholar 

  37. Reach, W. T., Vaubaillon, J., Lisse, C. M., Holloway, M. & Rho, J. Explosion of comet 17P/Holmes as revealed by the Spitzer Space Telescope. Icarus 208, 276–292 (2010).

    ADS  Google Scholar 

  38. Levasseur-Regourd, A.-C. et al. Cometary dust. Space Sci. Rev. 214, 64 (2018).

    ADS  Google Scholar 

  39. Mannel, T. et al. Dust of comet 67P/Churyumov–Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometer scale. Astron. Astrophys. 630, A26 (2019).

    Google Scholar 

  40. Lisse, C. M., Beichman, C. A., Bryden, G. & Wyatt, M. C. On the nature of the dust in the debris disk around HD 69830. Astrophys. J. 658, 584–592 (2007).

    ADS  Google Scholar 

  41. Chen, C. H., Su, K. & Xi, S. Spitzer’s debris disk legacy from main-sequence stars to white dwarfs. Nat. Astron. 4, 328–338 (2020).

    ADS  Google Scholar 

  42. Lewis, J. S. & Prinn, R. G. Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J. 238, 357–364 (1980).

    ADS  Google Scholar 

  43. Westphal, A. J. et al. The future of Stardust science. Meteor. Planet. Sci. 52, 1859–1898 (2017).

    ADS  Google Scholar 

  44. Kelley, M. S. P. et al. Mid-infrared spectra of comet nuclei. Icarus 284, 344–358 (2017).

    ADS  Google Scholar 

  45. Wooden, D. H., Ishii, H. A. & Zolensky, M. E. Cometary dust: the diversity of primitive refractory grains. Phil. Trans. R. Soc. A 375, 20160260 (2017).

    ADS  Google Scholar 

  46. Harker, D. E., Woodward, C. E., Kelley, M. S. P. & Wooden, D. H. Hyperactivity and dust composition of comet 103P/Hartley 2 during the EPOXI encounter. Astron. J. 155, 199 (2018).

    ADS  Google Scholar 

  47. Bardyn, A. et al. Carbon-rich dust in comet 67P/Churyumov–Gerasimenko measured by COSIMA/Rosetta. Mon. Not. R. Astron. Soc. 469, S712–S722 (2017).

    Google Scholar 

  48. Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M. & Li, J. Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proc. Natl Acad. Sci. USA 112, 8965–8970 (2015).

    ADS  Google Scholar 

  49. Reach, W. T., Kelley, M. S. & Vaubaillon, J. Survey of cometary CO2, CO, and particulate emissions using the Spitzer Space Telescope. Icarus 226, 777–797 (2013).

    ADS  Google Scholar 

  50. A’Hearn, M. F., Millis, R. C., Schleicher, D. O., Osip, D. J. & Birch, P. V. The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus 118, 223–270 (1995).

    ADS  Google Scholar 

  51. A’Hearn, M. F. et al. Deep Impact: excavating comet Tempel 1. Science 310, 258–264 (2005).

    ADS  Google Scholar 

  52. Lisse, C. M. et al. Rotationally resolved 8–35 micron Spitzer Space Telescope observations of the nucleus of comet 9P/Tempel 1. Astrophys. J. Lett. 625, L139–L142 (2005).

    ADS  Google Scholar 

  53. Kelley, M. S. P., Reach, W. T. & Lien, D. J. The dust trail of comet 67P/Churyumov Gerasimenko. Icarus 193, 572–587 (2008).

    ADS  Google Scholar 

  54. Kelley, M. S. P. et al. Spitzer observations of comet 67P/Churyumov–Gerasimenko at 5.5–4.3 AU from the Sun. Astron. J. 137, 4633–4642 (2009).

    ADS  Google Scholar 

  55. Agarwal, J. et al. The dust trail of comet 67P/Churyumov–Gerasimenko between 2004 and 2006. Icarus 207, 992–1012 (2010).

    ADS  Google Scholar 

  56. Lamy, P. L. et al. Hubble Space Telescope observations of the nucleus of comet 8P/Tuttle. Bull. Am. Astron. Soc. 40, 393 (2008).

    ADS  Google Scholar 

  57. Harmon, J. K., Nolan, M. C., Giorgini, J. D. & Howell, E. S. Radar observations of 8P/Tuttle: a contact-binary comet. Icarus 207, 499–502 (2010).

    ADS  Google Scholar 

  58. Groussin, O. et al. Spitzer Space Telescope observations of bilobate comet 8P/Tuttle. Astron. Astrophys. 632, A104 (2019).

    Google Scholar 

  59. Lisse, C. M. et al. Spitzer Space Telescope observations of the nucleus of comet 103P/Hartley 2. Publ. Astron. Soc. Pacif. 121, 968 (2009).

    ADS  Google Scholar 

  60. A’Hearn, M. F. et al. EPOXI at comet Hartley 2. Science 332, 1396–1400 (2011).

    ADS  Google Scholar 

  61. Lisse, C. M. et al. Comet C/2012 S1 (Ison). Cent. Bur. Electron. Tel. 3598, 2 (2013).

    ADS  Google Scholar 

  62. Meech, K. J. et al. Outgassing behavior of C/2012 S1 (ISON) from 2011 September to 2013 June. Astrophys. J. Lett. 776, L20 (2013).

    ADS  Google Scholar 

  63. Biver, N. et al. The extraordinary composition of the blue comet C/2016 R2 (PanSTARRS). Astron. Astrophys. 619, A127 (2018).

    Google Scholar 

  64. Cochran, A. L. & McKay, A. J. Strong CO+ and N2+ emission in comet C/2016 R2 (Pan-STARRS). Astrophys. J. Lett. 854, L10 (2018).

    ADS  Google Scholar 

  65. Wierzchos, K. & Womack, M. C/2016 R2 (PANSTARRS): a comet rich in CO and depleted in HCN. Astron. J. 156, 34 (2018).

    ADS  Google Scholar 

  66. McKay, A. J. et al. The peculiar volatile composition of CO-dominated comet C/2016 R2 (PanSTARRS). Astron. J. 158, 128 (2019).

    ADS  Google Scholar 

  67. Opitom, C., Hutsemékers, D., Jehin, E. & Rousselot, P. High resolution optical spectroscopy of the N2-rich comet C/2016 R2 (PanSTARRS). Astron. Astrophys. 624, A64 (2019).

    Google Scholar 

  68. Williams, G. V. MPEC 2017-U181: comet C/2017 U1 (2017).

  69. Trilling, D. et al. Spitzer observations of interstellar object 1I/‘Oumuamua. Astron J. 156, 261 (2018).

    ADS  Google Scholar 

  70. Davies, J. K., Green, S. F., Stewart, B. C., Meadows, A. J. & Aumann, H. H. The IRAS fast-moving object search. Nature 309, 315–319 (1984).

    ADS  Google Scholar 

  71. Sykes, M. V., Lebofsky, L. A., Hunten, D. M. & Low, F. The discovery of dust trails in the orbits of periodic comets. Science 232, 1115–1117 (1986).

    ADS  Google Scholar 

  72. Sykes, M. V. & Walker, R. Cometary dust trails I. Survey. Icarus 95, 180–210 (1992).

    ADS  Google Scholar 

  73. Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).

    ADS  Google Scholar 

  74. Reach, W. T., Kelley, M. S. & Sykes, M. V. A survey of debris trails from short-period comets. Icarus 191, 298–322 (2007).

    ADS  Google Scholar 

  75. Stansberry, J. et al. Spitzer observations of the dust coma and nucleus of 29P/Schwassmann–Wachmann 1. Astrophys. J. Suppl. 154, 463–468 (2004).

    ADS  Google Scholar 

  76. Nesvorný, D. et al. Candidates for asteroid dust trails. Astron. J. 132, 582–595 (2006).

    ADS  Google Scholar 

  77. Reach, W. T., Vaubaillon, J., Lisse, C. M., Holloway, M. & Rho, J. Explosion of comet 17P/Holmes as revealed by the Spitzer Space Telescope. Icarus 208, 276–292 (2010).

    ADS  Google Scholar 

  78. Vaubaillon, J. & Reach, W. T. Spitzer Space Telescope observations and the particle size distribution of comet 73P/Schwassmann–Wachmann 3. Astron. J. 139, 1491–1498 (2010).

    ADS  Google Scholar 

  79. Arendt, R. G. DIRBE comet trails. Astrophys. J. 148, 135 (2014).

    ADS  Google Scholar 

  80. Lisse, C. M. et al. Infrared observations of comets by COBE. Astrophys. J. 496, 971–991 (1998).

    ADS  Google Scholar 

  81. Kresak, L. & Kresakova, M. in Symp. Diversity and Similarity of Comets ESA SP-278, 739–744 (ESA, 1987).

  82. Rabinowitz, D. & Scotti, J. Periodic comet Faye (1991n). IAU Circ. 5366, 3 (1991).

    ADS  Google Scholar 

  83. Ishiguro, M. et al. First detection of an optical dust trail along the orbit of 22P/Kopff. Astrophys. J. 572, L117–L120 (2002).

    ADS  Google Scholar 

  84. Ishiguro, M. et al. Discovery of the dust trail of the Stardust comet sample return mission target: 81P/Wild 2. Astrophys. J. 589, L101–L104 (2003).

    ADS  Google Scholar 

  85. Ishiguro, M. Cometary dust trail associated with Rosetta mission target: 67P/Churyumov Gerasimenko. Icarus 193, 96–104 (2008).

    ADS  Google Scholar 

  86. Lamy, P. & Toth, I. The colors of cometary nuclei — comparison with other primitive bodies of the Solar System and implications for their origin. Icarus 201, 674–713 (2009).

    ADS  Google Scholar 

  87. Levison, H. F. & Duncan, M. J. From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127, 13–32 (1997).

    ADS  Google Scholar 

  88. Gladman, B., Marsden, B. G. & Vanlaerhoven, C. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 43–57 (Univ. Arizona Press, 2008).

  89. Jewitt, D. The active centaurs. Astron. J. 137, 4296–4312 (2009).

    ADS  Google Scholar 

  90. Jewitt, D. & Kalas, P. Thermal observations of centaur 1997 CU26. Astrophys. J 499, L103–L106 (1998).

    ADS  Google Scholar 

  91. Fernández, Y. R., Jewitt, D. C. & Sheppard, S. S. Thermal properties of centaurs Asbolus and Chiron. Astron. J. 123, 1050–1055 (2002).

    ADS  Google Scholar 

  92. Stansberry, J. et al. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 161–179 (Univ. Arizona Press, 2008).

  93. Davies, J., Spencer, J., Sykes, M., Tholen, D. & Green, S. (5145) Pholus. IAU Circ. 5698, 2 (1993).

    ADS  Google Scholar 

  94. Bus, S. J. et al. Stellar occultation by 2060 Chiron. Icarus 123, 478–490 (1996).

    ADS  Google Scholar 

  95. Duffard, R. et al. Astron. Astrophys. 564, A92 (2014).

    Google Scholar 

  96. Müller, T.G., Lellouch, E. & Fornaiser, S. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 153–181 (Elsevier, 2020).

  97. Peixinho, N. et al. Astron. Astrophys. 410, L29 (2003).

    ADS  Google Scholar 

  98. Tegler, S. C., Bauer, J. M., Romanishin, W. & Peixinho, N. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 105 (Univ. Arizona Press, 2008).

  99. Mainzer, A. et al. Preliminary results from NEOWISE: an enhancement to the Wide-field Infrared Survey Explorer for Solar System science. Astrophys. J. 731, 53 (2011).

    ADS  Google Scholar 

  100. Bauer, J. M. et al. Centaurs and scattered disk objects in the thermal infrared: analysis of WISE/NEOWISE observations. Astrophys. J. 773, 22 (2013).

    ADS  Google Scholar 

  101. Senay, M. C. & Jewitt, D. Coma formation driven by carbon monoxide release from comet Schwassmann–Wachmann 1. Nature 371, 229–231 (1994).

    ADS  Google Scholar 

  102. Paganini, L. et al. Ground-based infrared detections of CO in the centaur-comet 29P/Schwassmann–Wachmann 1 at 6.26 AU from the Sun. Astrophys. J. 766, 100 (2013).

    ADS  Google Scholar 

  103. Wierzchos, K. & Womack, M. CO gas and dust outbursts from centaur 29P/Schwassmann–Wachmann. Astron. J. 159, 136 (2020).

    ADS  Google Scholar 

  104. Kowal, C. T. & Gehrels, T. Slow-moving object Kowal. IAU Circ. 3129, 1 (1977).

    ADS  Google Scholar 

  105. West, R. M. A photometric study of (2060) Chiron and its coma. Astron. Astrophys. 241, 635–645 (1991).

    ADS  Google Scholar 

  106. Meech, K. J. & Belton, M. J. S. The atmosphere of 2060 Chiron. Astron. J. 100, 1323 (1990).

    ADS  Google Scholar 

  107. Womack, M., Sarid, G. & Wierzchos, K. CO in distantly active comets. Publ. Astron. Soc. Pacif. 129, 031001 (2017).

    ADS  Google Scholar 

  108. Sierks, H. et al. On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347, aaa1044 (2015).

    Google Scholar 

  109. Stansberry, J. A. et al. Spitzer observations of the dust coma and nucleus of 29P/Schwassmann–Wachmann 1. Astrophys. J. Suppl. 154, 463–468 (2004).

    ADS  Google Scholar 

  110. Schambeau, C. A. et al. A new analysis of Spitzer observations of Comet 29P/Schwassmann–Wachmann 1. Icarus 260, 60–72 (2015).

    ADS  Google Scholar 

  111. Bauer, J. M. et al. The large-grained dust coma of 174P/Echeclus. Publ. Astron. Soc. Pacif. 120, 393 (2008).

    ADS  Google Scholar 

  112. Rieke, G. R. et al. The Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. 154, 25–29 (2004).

    ADS  Google Scholar 

  113. Brucker, M. J. et al. High albedos of low inclination classical Kuiper belt objects. Icarus 201, 284–294 (2009).

    ADS  Google Scholar 

  114. Schaller, E. L. & Brown, M. E. Volatile loss and retention on Kuiper belt objects. Astrophys. J. Lett. 659, L61–L64 (2007).

    ADS  Google Scholar 

  115. Zahnle, K. J. & Catling, D. C. The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. Astrophys. J. 843, 122 (2017).

    ADS  Google Scholar 

  116. Stansberry, J. A. et al. Physical properties of trans-Neptunian binaries (120347) Salacia-Actaea and (42355) Typhon-Echidna. Icarus 219, 676–688 (2012).

    ADS  Google Scholar 

  117. Grundy, W. M. et al. The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë. Icarus 257, 130–138 (2015).

    ADS  Google Scholar 

  118. Lellouch, E. et al. “TNOs are Cool”: a survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and centaurs from combined Herschel and Spitzer observations. Astron. Astrophys. 557, A60 (2013).

    Google Scholar 

  119. Müller, T. G. et al. “TNOs are Cool”: a survey of the transneptunian region. Earth Moon Planets 105, 209–219 (2009).

    ADS  Google Scholar 

  120. Fornasier, S. et al. “TNOs are Cool”: a survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm. Astron. Astrophys. 555, A15 (2013).

    Google Scholar 

  121. Vilenius, E. et al. “TNOs are Cool”: a survey of the trans-Neptunian region. X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations. Astron. Astrophys. 564, A35 (2014).

    Google Scholar 

  122. Vilenius, E. et al. “TNOs are Cool”: a survey of the trans-Neptunian region. XIV. Size/albedo characterization of the Haumea family observed with Herschel and Spitzer. Astron. Astrophys. 618, A136 (2018).

    Google Scholar 

  123. Emery, J. P. et al. Ices on (90377) Sedna: confirmation and compositional constraints. Astron. Astrophys. 466, 395–398 (2007).

    ADS  Google Scholar 

  124. Dalle Ore, C. M. et al. Composition of KBO (50000) Quaoar. Astron. Astrophys. 501, 349–357 (2009).

    ADS  Google Scholar 

  125. Pinilla-Alonso, N., Stansberry, J. A. & Holler, B. J. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 395–412 (Elsevier, 2020).

  126. Barucci, M. A. & Merlin, F. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 109–126 (Elsevier, 2020).

  127. Young, L. A., Braga-Ribas, F. & Johnson, R. E. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 127–151 (Elsevier, 2020).

  128. Snodgrass, C., Fitzsimmons, A., Lowry, S. C. & Weissman, P. The size distribution of Jupiter Family comet nuclei. Mon. Not. R. Astron. Soc. 414, 458–469 (2011).

    ADS  Google Scholar 

  129. Weiler, M., Rauer, H. & Sterken, C. Cometary nuclear magnitudes from sky survey observations. Icarus 212, 351–366 (2011).

    ADS  Google Scholar 

  130. Tancredi, G., Fernandez, J. A., Rickman, H. & Licandro, J. Nuclear magnitudes and the size distribution of Jupiter family comets. Icarus 182, 527–549 (2006).

    ADS  Google Scholar 

  131. Lisse, C. M., Chen, C. H., Wyatt, M. C. & Morlok, A. Circumstellar dust created by terrestrial planet formation in HD 113766. Astrophys. J. 673, 1106–1122 (2008).

    ADS  Google Scholar 

  132. Lisse, C. M. et al. Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the ~12 Myr HD172555 system. Astrophys. J. 701, 2019–2032 (2009).

    ADS  Google Scholar 

  133. Lisse, C. M. et al. Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η Corvi at ~1 Gyr. Astrophys. J. 747, 93 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank NASA, JPL, Caltech and the Spitzer project, without which none of the science described above would have been possible. As a NASA mission, local Solar System science measurements could have been downplayed or marginalized, but this was never the case. Instead, the authors experienced Spitzer observing schedules built around some of their time-critical observations, and large amounts of legacy science dedicated to their surveys. Project staff were welcoming and friendly but also highly professional and competent. The science return of NASA efforts like the Deep Impact, Stardust and OSIRIS-REx missions, and the ISON and ‘Oumuamua observing campaigns, were greatly enhanced by Spitzer’s observations. Notable support was provided by many, including L. Armus, S. Carey, C. Grillmair, G. Helou, R. Hurt, V. Meadows, L. Rebull, N. Silberman, G. Squires, T. Soifer, L. Storri-Lombardi and M. Werner. E.F.-V. also acknowledges support from the 2017 Preeminent Postdoctoral Program (P3) at UCF.

Author information

Authors and Affiliations

Authors

Contributions

C.L., D.E.T., Y.F., R.G., Y.P. and D.C. were responsible for the overall shape and structure of this manuscript, and much of the content of the introduction and the comet sections. Y.F., M.K., A.M., W.R., M.S., D.W., D.H. and C.W. were instrumental in producing the final form of the comet sections, as Y.F. drafted the Comet nucleus discussion, M.K., D.W., D.H. and C.W. the comet composition discussion, M.K., A.M. and D.E.T. the text on important individual comets, and W.R. and M.S. the discussion on comet trails. J.B., J.E. and J.S. were primarily responsible for creating the centaurs section. D.C., E.F.-V., N.P.-A. and J.S. wrote the KBO section.

Corresponding author

Correspondence to Carey Lisse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Imre Toth for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisse, C., Bauer, J., Cruikshank, D. et al. Spitzer’s Solar System studies of comets, centaurs and Kuiper belt objects. Nat Astron 4, 930–939 (2020). https://doi.org/10.1038/s41550-020-01219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-01219-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing