Skip to main content
Log in

Comparison of conventional molecular and whole-genome sequencing methods for subtyping Salmonella enterica serovar Enteritidis strains from Tunisia

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We sought to determine the relative value of conventional molecular methods and whole-genome sequencing (WGS) for subtyping Salmonella enterica serovar Enteritidis recovered from 2000 to 2015 in Tunisia and to investigate the genetic diversity of this serotype. A total of 175 Salmonella Enteritidis isolates were recovered from human, animal, and foodborne outbreak samples. Pulsed-field gel electrophoresis (PFGE), multiple locus variable-number tandem repeat analysis (MLVA), and whole-genome sequencing were performed. Eight pulsotypes were detected for all isolates with PFGE (DI = 0.518). Forty-five Salmonella Enteritidis isolates were selected for the MLVA and WGS techniques. Eighteen MLVA profiles were identified and classified into two major clusters (DI = 0.889). Core genome multilocus typing (cgMLST) analysis revealed 16 profiles (DI = 0.785). Whole-genome analysis indicated 660 single-nucleotide polymorphism (SNP) divergences dividing these isolates into 43 haplotypes (DI = 0.997). The phylogenetic tree supported the classification of Salmonella Enteritidis isolates into two distinct lineages subdivided into five clades and seven subclades. Pairwise SNP differences between the isolates ranged between 302 and 350. We observed about 311 SNP differences between the two foodborne outbreaks, while only less or equal to 4 SNP differences within each outbreak. SNP-based WGS typing showed an excellent discriminatory power comparing with the conventional methods such as PFGE and MLVA. Besides, we demonstrate the added value of WGS as a complementary subtyping method to discriminate outbreak from non-outbreak isolates belonging to common subtypes. It is important to continue the survey of Salmonella Enteritidis lineages in Tunisia using WGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Campioni F, Pitondo-Silva A, Bergamini AMM, Falcão JP (2015) Comparison of four molecular methods to type Salmonella Enteritidis strains. APMIS 123:422–426. https://doi.org/10.1111/apm.12367

    Article  CAS  PubMed  Google Scholar 

  2. Ben Salem R, Abbassi MS, García V, García-Fierro R, Fernández J, Kilani H et al (2017) Antimicrobial drug resistance and genetic properties of Salmonella enterica serotype Enteritidis circulating in chicken farms in Tunisia. J Infect Public Health 10:855–860. https://doi.org/10.1016/j.jiph.2017.01.012

    Article  PubMed  Google Scholar 

  3. Ktari S, Ksibi B, Gharsallah H, Mnif B, Maalej S, Rhimi F et al (2016) Molecular epidemiological characteristics of Salmonella enterica serovars Enteritidis, Typhimurium and Livingstone strains isolated in a Tunisian university hospital. APMIS 124:194–200. https://doi.org/10.1111/apm.12484

    Article  PubMed  Google Scholar 

  4. Van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK et al (2007) Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13:1–46. https://doi.org/10.1111/j.1469-0691.2007.01786.x

    Article  PubMed  Google Scholar 

  5. Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC et al (2019) Assessment and comparison of molecular subtyping and characterization methods for Salmonella. Front Microbiol 10:1591. https://doi.org/10.3389/fmicb.2019.01591

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zheng J, Keys CE, Zhao S, Meng J, Brown EW (2007) Enhanced subtyping scheme for Salmonella Enteritidis. Emerg Infect Dis 13:1932–1935. https://doi.org/10.3201/eid1312.070185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng X, Shariat N, Driebe EM, Roe CC, Tolar B, Trees E et al (2015) Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J Clin Microbiol 53:212–218. https://doi.org/10.1128/JCM.02332-14

    Article  PubMed  Google Scholar 

  8. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z, Sangal V et al (2012) Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 8:e1002776. https://doi.org/10.1371/journal.ppat.1002776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hyeon J-Y, Chon J-W, Park J-H, Kim M-S, Oh Y-H, Choi I-S et al (2013) A comparison of subtyping methods for differentiating Salmonella enterica serovar Enteritidis isolates obtained from food and human sources. Osong Public Health Res Perspect 4:27–33. https://doi.org/10.1016/j.phrp.2012.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bertrand S, De Lamine de Bex G, Wildemauwe C, Lunguya O, Phoba MF, Ley B et al (2015) Multilocus variable-number tandem repeat (MLVA) typing tools improved the surveillance of Salmonella Enteritidis: a 6 years retrospective study. PLoS One 10:e0117950. https://doi.org/10.1371/journal.pone.0117950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campioni F, Davis M, Medeiros MIC, Falcão JP, Shah DH (2013) MLVA typing reveals higher genetic homogeneity among S. Enteritidis strains isolated from food, humans and chickens in Brazil in comparison to the North American strains. Int J Food Microbiol 162:174–181. https://doi.org/10.1016/j.ijfoodmicro.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  12. Ngoi ST, Thong KL (2013) Molecular characterization showed limited genetic diversity among Salmonella Enteritidis isolated from humans and animals in Malaysia. Diagn Microbiol Infect Dis 77:304–311. https://doi.org/10.1016/j.diagmicrobio..09.004

    Article  CAS  PubMed  Google Scholar 

  13. Ziebell K, Chui L, King R, Johnson S, Boerlin P, Johnson RP (2017) Subtyping of Canadian isolates of Salmonella Enteritidis using multiple locus variable number tandem repeat analysis (MLVA) alone and in combination with pulsed-field gel electrophoresis (PFGE) and phage typing. J Microbiol Methods 139:29–36. https://doi.org/10.1016/j.mimet.04.012

    Article  CAS  PubMed  Google Scholar 

  14. Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM (2014) Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One 9:e87991. https://doi.org/10.1371/journal.pone.0087991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B et al (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella , and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67. https://doi.org/10.1089/fpd.2006.3.59

    Article  CAS  PubMed  Google Scholar 

  16. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L et al (2005) Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 43:1045–1050. https://doi.org/10.1128/JCM.43.3.1045-1050.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hopkins KL, Peters TM, de Pinna EV, Wain J (2011) Standardisation of multilocus variable-number tandem-repeat analysis (MLVA) for subtyping of Salmonella enterica serovar Enteritidis. Eurosurveillance 16:19942. https://doi.org/10.2807/ese.16.32.19942-en

    Article  PubMed  Google Scholar 

  18. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA (2012) PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinf 13:87. https://doi.org/10.1186/1471-2105-13-87

    Article  Google Scholar 

  19. Chakraborty RA (1974) Note on Nei’s measure of gene diversity in a substructured population. Hum Genet 21:85–88. https://doi.org/10.1007/BF00278571

    Article  CAS  Google Scholar 

  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL et al (2012) Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. https://doi.org/10.1128/JCM.06094-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alikhan N-F, Zhou Z, Sergeant MJ, Achtman M (2018) A genomic overview of the population structure of Salmonella. PLoS Genet 14:e1007261. https://doi.org/10.1371/journal.pgen.1007261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L et al (2014) In Silico detection and typing of plasmids using plasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Langmead B (2010) Aligning short sequencing reads with bowtie. Curr Protoc Bioinformatics CHAPTER:Unit-11.7. doi: https://doi.org/10.1002/0471250953.bi1107s32

  25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  28. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ktari S, Mahjoubi F, Jaoua S, Karray A, Marty N, Ben Redjeb S et al (2006) Use of molecular subtyping methods to investigate two nosocomial outbreaks due to Salmonella Livingstone in Sfax hospital, Tunisia. Pathol Biol 54:331–336. https://doi.org/10.1016/j.patbio.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  30. Ktari S, Arlet G, Verdet C, Jaoua S, Kachrid A, Ben Redjeb S et al (2009) Molecular epidemiology and genetic environment of acquired blaACC-1 in Salmonella enterica serotype Livingstone causing a large nosocomial outbreak in Tunisia. Microb Drug Resist 15:279–286. https://doi.org/10.1089/mdr.2009.0035

    Article  CAS  PubMed  Google Scholar 

  31. Abbassi-Ghozzi I, Jaouani A, Aissa RB, Martinez-Urtaza J, Boudabous A, Gtari M (2011) Antimicrobial resistance and molecular analysis of non-typhoidal Salmonella isolates from human in Tunisia. Pathol Biol 59:207–212. https://doi.org/10.1016/j.patbio.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  32. Borges KA, Furian TQ, de SOUZA SN, Tondo EC, Streck AF, Salle CTP et al (2017) Spread of a major clone of Salmonella enterica serotype Enteritidis in poultry and in salmonellosis outbreaks in Southern Brazil. J Food Prot 80:158–163. https://doi.org/10.4315/0362-028X.JFP-16-299

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Shi X, Li Y, Chen Q, Jiang M, Li W, et al (2016) The evaluation and application of multilocus variable number tandem repeat analysis (MLVA) for the molecular epidemiological study of Salmonella enterica subsp. enterica serovar Enteritidis infection. Ann Clin Microbiol Antimicrob 15. doi: http://www.ann-clinmicrob.com/content/15/1/4https://doi.org/10.1186/s12941-016-0119-3

  34. Wuyts V, Denayer S, Roosens NHC, Mattheus W, Bertrand S, Marchal K, et al (2015) Whole genome sequence analysis of Salmonella Enteritidis PT4 outbreaks from a National Reference Laboratory’s viewpoint. PLoS Curr 7.doi: https://doi.org/10.1371/currents.outbreaks.aa5372d90826e6cb0136ff66bb7a62fc

  35. Noda T (2004) Multi-locus sequence typing of Salmonella enterica subsp. enterica serovar Enteritidis strains in Japan between 1973 and 2011; 2004. Acta Vet Scand 53:38. https://doi.org/10.1186/1751-0147-53-38

    Article  Google Scholar 

  36. Papadopoulos T, Petridou E, Zdragas A, Mandilara G, Nair S, Peters T et al (2016) Comparative study of all Salmonella enterica serovar Enteritidis strains isolated from food and food animals in Greece from 2008 to 2010 with clinical isolates. Eur J Clin Microbiol Infect Dis 35:741–746. https://doi.org/10.1007/s10096-016-2591-2

    Article  CAS  PubMed  Google Scholar 

  37. Taylor AJ, Lappi V, Wolfgang WJ, Lapierre P, Palumbo MJ, Medus C et al (2015) Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. J Clin Microbiol 53:3334–3340. https://doi.org/10.1128/JCM.01280-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R (2015) Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol 53:1063–1071. https://doi.org/10.1128/JCM.03235-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Besser JM, Carleton HA, Trees E, Stroika SG, Hise K, Wise M et al (2019) Interpretation of whole-genome sequencing for enteric disease surveillance and outbreak investigation. Foodborne Pathog Dis 16:504–512. https://doi.org/10.1089/fpd.2019.2650

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tolar B, Joseph LA, Schroeder MN, Stroika S, Ribot EM, Hise KB et al (2019) An overview of PulseNet USA databases. Foodborne Pathog Dis 16:457–462. https://doi.org/10.1089/fpd.2019.2637

    Article  PubMed  PubMed Central  Google Scholar 

  41. Deng X, Desai PT, den Bakker HC, Mikoleit M, Tolar B, Trees E et al (2014) Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages. Emerg Infect Dis 20:1481–1489. https://doi.org/10.3201/eid2009.131095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN et al (2012) Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet 44:1215–1221. https://doi.org/10.1038/ng.2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR, Connor T et al (2016) Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005-2010. Emerg Infect Dis 22:617–624. https://doi.org/10.3201/eid2204.150531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, Iqbal Z et al (2014) Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis. Emerg Infect Dis 20:1306–1314. https://doi.org/10.3201/eid2008.131399

    Article  CAS  Google Scholar 

  45. Villa L, García-Fernández A, Fortini D, Carattoli A (2010) Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 65:2518–2529. https://doi.org/10.1093/jac/dkq347

    Article  CAS  PubMed  Google Scholar 

  46. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X et al (2016) Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet 48:1211–1217. https://doi.org/10.1038/ng.3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rakov AV, Shubin FN (2019) Comparative genomic analysis of the virulence plasmid from Salmonella enterica subspecies enterica serovar Enteritidis. Russ J Genet 55:144–153. https://doi.org/10.1134/S102279541902011X

    Article  CAS  Google Scholar 

  48. Toro M, Retamal P, Ayers S, Barreto M, Allard M, Brown EW et al (2016) Whole-genome sequencing analysis of Salmonella enterica serovar Enteritidis isolates in Chile provides insights into possible transmission between gulls, poultry, and humans. Appl Environ Microbiol 82:6223–6232. https://doi.org/10.1128/AEM.01760-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Veterinary Research team of Sfax-Tunisia and especially Dr. Sonia Zormati for providing animal Salmonella Enteritidis isolates.

Funding

This work was supported financially by the Research Laboratory Microorganisms and Human Disease “MPH LR03SP03” - Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Ktari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Phylogenetic results of Salmonella Enteritidis clustering isolates (lineage A), NCBI Pathogen detection cluster PDS000004725.23. The scale bar indicates the number of substitutions per site, where the branch length is proportional to the number of SNPs present. Detailed SNP differences also are available at the NCBI Pathogen Detection site by searching for either strain IDs or SNP cluster IDs. (PDF 1774 kb)

Fig. S2

Phylogenetic results of Salmonella Enteritidis clustering isolates (lineage B), NCBI Pathogen detection cluster PDS000056272.14. The scale bar indicates the number of substitutions per site where the branch length is proportional to the number of SNPs present. Detailed SNP differences also are available at the NCBI Pathogen Detection site by searching for either strain IDs or SNP cluster IDs. (PDF 2048 kb)

Fig. S3

Population structure of Salmonella Enteritidis isolates. (A) Maximum-likelihood tree of chromosomal sequences (B) Maximum-likelihood tree of plasmid sequences (PDF 638 kb)

ESM 1

(XLSX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksibi, B., Ktari, S., Othman, H. et al. Comparison of conventional molecular and whole-genome sequencing methods for subtyping Salmonella enterica serovar Enteritidis strains from Tunisia. Eur J Clin Microbiol Infect Dis 40, 597–606 (2021). https://doi.org/10.1007/s10096-020-04055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-020-04055-8

Keywords

Navigation