Skip to main content
Log in

Nonlinear Optical Method of Determination the Chirp of Broadband Femtosecond Laser Pulse in IR-Range

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

A new method for determining the chirp of a femtosecond broadband IR laser pulse at a central wavelength of 2.5 μm, based on the generation of a spectral supercontinuum in the field of a spectrally limited femtosecond laser pulse, propagating in a single mode fiber based on chalcogenide glass, and subsequent noncollinear generation of radiation at summary frequency by spectrally limited and spectral broadened supercontinuum femtosecond pulses is proposed. The time dependences of the instantaneous frequency of a femtosecond broadband pulse, obtained both from the results of numerical integrations of the equation describing the process of spectral supercontinuum generation and from the results of two-dimensional distributions of dynamic spectrograms are presented. It is shown that the proposed method allows one to determine the chirp of a broadband femtosecond IR laser pulse, formed during the soliton propagation mode in a fiber, with a relative error of no more than 5%, but the chirp of a broadband femtosecond IR laser pulse, formed in the process of non-soliton propagation in a fiber, with a relative error of no more than 10%.The presented results can be used in the development of a nonlinear optical phase correlator for determination the phase and time profile of a femtosecond laser pulse in the mid-IR range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Laane, J., Molecular Spectroscopy, Amsterdam: Elsevier, 2018.

    Google Scholar 

  2. Akhmanov, S.A., Vysloukh, V.A., and Chirkin, A.S., Optics of Femtosecond Laser Pulses, New York: Springer-Verlag, 1992.

    Google Scholar 

  3. Agrawal, G.P., Nonlinear Fiber Optics, San Diego, CA: Academic, 2007.

    MATH  Google Scholar 

  4. Gustafson, T.K., Taran, J.P., Haus, H.A., Lifsitz, J.R., and Kelley, P.L., Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments, Phys. Rev., 1969, vol. 177, no. 1, pp. 306–313.

    Article  Google Scholar 

  5. Yan, Y.X., Gamble, E.B., and Nelson, K.A.J., Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications, Chem. Phys., 1985, vol. 83, pp. 5391–5400.

    Google Scholar 

  6. Tao, G., Ebendorff-Heidepriem, H., Stolyarov, A.M., Danto, S., Badding, J.V., Fink, Y., Ballato, J., and Abouraddy, A.F., Infrared fibers, Adv. Opt. Photonics, 2015, vol. 7, no. 2, pp. 379–458.

    Article  Google Scholar 

  7. Shiryaev, V.S. and Churbanov, M.F., Trends and prospects for development of chalcogenide fibers for mid-infrared transmission, J. Non-Cryst. Solids, 2013, vol. 377, pp. 225–230.

    Article  Google Scholar 

  8. Gao, W., Amraoui, M.E., Liao, M., Kawashima, H., Duan, Z., Deng, D., Cheng, T., Suzuki, T., Messaddeq, Y., and Ohishi, Y., Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber, Opt. Express, 2013, vol. 21, no. 8, pp. 9573–9583.

    Article  Google Scholar 

  9. Luo, B., Wang, Y., Dai, S., Sun, Y., Zhang, P., Wang, X., and Chen, F., Midinfrared supercontinuum generation in As2Se3–As2S3 chalcogenide glass fiber with high NA, J. Lightwave Technol., 2017, vol. 35, no. 12, pp. 2464–2469.

    Article  Google Scholar 

  10. Théberge, F., Thiré, N., Daigle, J., Mathieu, P., Schmidt, B.E., Messaddeq, Y., Vallée, R., and Légaré, F., Multioctave infrared supercontinuum generation in large-core As2S3 fibers, Opt. Lett., 2014, vol. 39, no. 22, pp. 6474–6477.

    Article  Google Scholar 

  11. Dudley, J.M. and Taylor, J.R., Supercontinuum Generation in Optical Fibers, Cambridge: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  12. Sanghera, J.S., Shaw, L.B., Pureza, P., Nguyen, V.Q., Gibson, D., Busse, L., Aggarwal, I.D., Florea, C.M., and Kung, F.H., Nonlinear properties of chalcogenide glass fibers, Int. J. Appl. Glass Sci., 2010, vol. 1, no. 3, pp. 296–308.

    Article  Google Scholar 

  13. Ultrafast lasers. http://www.qpeak.com/technologies/ultrafast-lasers.

  14. Rodney, W.S., Malitson, I.H., and King, T.A., Refractive index of arsenic trisulfide, J. Opt. Soc. Am., 1958, vol. 48, no. 9, pp. 633–636.

    Article  Google Scholar 

  15. Andreeva, E.I., Bylina, M.S., Glagolev, S.F., and Chaimardanov, P.A., Properties of temporary optical solitons in optical fibers and the possibility of their use in telecommunications. Part 1, Tr. Uch. Zaved. Svyazi, 2018, vol. 4, no. 1, pp. 5–12; Andreeva, E.I., Bylina, M.S., Glagolev, S.F., and Chaimardanov, P.A., Properties of temporary optical solitons in optical fibers and the possibility of their use in telecommunications. Part 2, Tr. Uch. Zaved. Svyazi, 2018, vol. 4, no. 2, pp. 26–35.

    Google Scholar 

  16. Yang, K., Wang, X., Jain, A., Ll, L., Tripathy, S., and Kumar, J., Electroabsorption investigation of a nonlinear optical azo polymer, MCLC S&T,Sect. B: Nonlinear Opt., 1998, vol. 19, no. 3, pp. 215–226.

    Google Scholar 

  17. Avakyan, R.A., Vardanyan, A.O., and Oganesyan, D.L., Cross-correlation method for determination of the profile of a single ultrashort pulse, Quantum Electron., 1994, vol. 24, no. 1, pp. 71–74.

    Article  Google Scholar 

  18. Trebino, R., Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, New York: Springer-Verlag, 2002.

    Google Scholar 

  19. Hovhannisyan, D.L., Vardanyan, A.H., and Hovhannisyan, G.D., Determination of the subpicosecond laser pulse chirp in the middle IR range based on the fourth harmonic noncollinear generation, J. Contemp. Phys. (Arm. Acad. Sci.), 2018, vol. 53, no. 2, pp. 112–128.

  20. Hovhannisyan, D.L., Vardanyan, A.H., and Hovhannisyan, G.D., Pulse compression of difference frequency radiation by liquid crystal phase transparent, J. Contemp. Phys. (Arm. Acad. Sci.), 2017, vol. 52, no. 4, pp. 457–472.

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Hovhannisyan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovhannisyan, D.L., Hovhannisyan, A.H., Vardanyan, A.H. et al. Nonlinear Optical Method of Determination the Chirp of Broadband Femtosecond Laser Pulse in IR-Range. Opt. Mem. Neural Networks 29, 165–178 (2020). https://doi.org/10.3103/S1060992X20030121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X20030121

Keywords:

Navigation