Skip to main content
Log in

High Quality Factor and Dispersion Compensation Based on Fiber Bragg Grating in Dense Wavelength Division Multiplexing

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

Chromatic Dispersion Compensation (CDC) using Fiber Bragg Grating (FBG) techniques in Dense Wavelength Division Multiplexing (DWDM) system is presented in this article. Pulse broadening effects on the transmitted signal can be limited by Dispersion Compensation (DC) mechanisms. To overcome this problem and improve the system performance, a suggested system for 10 Gbps using Chirped Fiber Bragg Grating (CFBG) as a dispersion compensator, Non-Return-to-Zero (NRZ) modulation format and an Erbium Doped fiber Amplifier (EDFA) on a Single Mode Fiber (SMF) is designed. The result shows that, with using CFBG grating length of 90 mm, SMF length of 30 Km, input power of 15 dBm and attenuation coefficient 0.1 dB/Km, the Quality-Factor (QF) is 39.9373 dB. However, increasing SMF length to 100 Km, the QF is 12.173 dB. Thus, Results show that this model is more efficient in terms of QF, Bit Error Rate (BER) and eye diagrams related to other published papers which can be useful in many applications in telecommunication system like Sensor Networks, Remote Radar Networks, Tele-spectroscopic process control network, and many more networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Senior, J. and Jamro, M., Optical Fiber Communications Principles and Practice, Upper Saddle River, NJ: Pearson Education, 2009, 3rd ed.

    Google Scholar 

  2. Raghav, P. and Chaudhary, R., Compensation of dispersion in 10 Gbps WDM system by using fiber Bragg grating, Int. J. Comput. Eng. Manage., 2012, vol. 15, no. 5, pp. 16–20.

  3. Hossain, Md., S., Howlader, S., and Basak, R., Investigating the Q-factor and BER of a WDM system in optical fiber communication network by using SOA, Int. J. Innovation Sci. Res., 2015, vol. 13, no. 1, pp. 315–322. https://doi.org/10.1.1.675.6443

  4. Alam, S.M.J., Alam, M.R., Hu, G., and Mehrab Md., Z., Bit error rate optimization in fiber optic communications, Int. J. Mach. Learn. Comput., 2011, vol. 1, no. 5, pp. 435–440. https://doi.org/10.7763/IJMLC.2011.V1.65

    Article  Google Scholar 

  5. Breuer, D., Geilhard, F., Hulsermann, R., Kind, M., Lange, C., Monath, T., and Weis, E., Opportunities for next-generation optical access, IEEE Commun. Mag., 2011, vol. 49, no. 2, pp. 16–24. https://doi.org/10.1109/MCOM.2011.5706309

    Article  Google Scholar 

  6. Effenberger, F., Kani, J., and Maeda, Y., Standardization trends and prospective views on the next generation of broadband optical access systems, IEEE J. Sel. Areas Commun., 2010, vol. 28, no. 6, pp. 773–780. https://doi.org/10.1109/JSAC.2010.100802

    Article  Google Scholar 

  7. Ramaswami, R., Sivarajan, K., and Sasaki, G., Optical Networks: A Practical Perspective, Amsterdam: Elsevier, 2009, 3rd ed.

    Google Scholar 

  8. Kaler, R. and Kaler, R.S., Gain and noise figure performance of Erbium doped fibre amplifiers (EDFA) and compact EDFAs, Optik (Munich), 2011, vol. 122, no. 5, pp. 440–443. https://doi.org/10.1016/j.ijleo.2010.02.028

    Article  Google Scholar 

  9. Semmalar, S. and Malarkkan, S., Output signal power analysis in erbium-doped fiber amplifier with pump power and length variation using various pumping techniques, Int. Scholarly Res. Not., 2013, vol. 2013, no. 312707, pp. 1–6. https://doi.org/10.1155/2013/312707

    Article  Google Scholar 

  10. Choi, B.H., Park, H.H., and Chu, M.J., New pump wavelength of 1540 nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA), IEEE J. Quantum Electron., 2003, vol. 39, no. 10, pp. 1272–1280. https://doi.org/10.1109/JQE.2003.817582

    Article  Google Scholar 

  11. Zou, X.Y., Hayee, M.I., Hwang, S.-M., and Willner, A.E., Limitations in 10 GB/s WDM optical-fiber transmission when using a variety of fiber types to manage dispersion and nonlinearities, IEEE J. Lightwave Technol., 1996, vol. 14, no. 6, pp. 1144–1152. https://doi.org/10.1109/50.511616

    Article  Google Scholar 

  12. Yu, J. and Yang, B., Dispersion-allacated soliton technology with long amplifier spacing and long distance, IEEE Photonics Technol. Lett., vol. 9, no. 7, pp. 952–954, 1997. https://doi.org/10.1109/68.593363

    Article  Google Scholar 

  13. Takiguchi, K., Okamato, K., and Moriwaki, K., Planar lightwave circuit optical dispersion equalizer, IEEE Photonics Technol. Lett., 1994, vol. 6, no. 1, pp. 86–88. https://doi.org/10.1109/68.265898

    Article  Google Scholar 

  14. Gnauck, A.H., Garrett, L.D., Danziger, Y., Levy, U., and Tur, M., Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre, IET Electron. Lett., 2000, vol. 36, no. 23, pp. 1946–1947. https://doi.org/10.1049/el:20001312

    Article  Google Scholar 

  15. Devra, S. and Kaur, G., Different compensation techniques to compensate chromatic dispersion in fiber optics, Int. J. Eng. Inf. Technol., 2011, vol. 3, no. 1, pp. 1–4.

  16. Nielsen, L.G., Knudsen, S.N., Edvold, B., Veng, T., Magnussen, D., Larsen, C.C., and Damsgaard, H., Dispersion compensating fibers, Opt. Fiber Technol., 2000, vol. 6, no. 2, pp. 164–180. https://doi.org/10.1006/ofte.1999.0324

    Article  Google Scholar 

  17. Sumetsky, M. and Eggleton, B.J., Fiber Bragg gratings for dispersion compensation in optical communication systems, in Ultrahigh-Speed Optical Transmission Technology, Optical and Fiber Communications Reports Series vol. 3, New York: Springer-Verlag, 2005, vol. 2, no. 3, pp. 256–278. https://doi.org/10.1007/s10297-004-0026-9

  18. Cheng, C.H., Signal processing for optical communication, IEEE Signal Process. Mag., 2006, vol. 23, no. 1, pp. 88–96. https://doi.org/10.1109/MSP.2006.1593341

    Article  Google Scholar 

  19. Cao, S., Chen, J., Damask, J.N., Doerr, C.R., Guiziou, L., Harvey, G., Hibino, Y., Li, H., Suzuki, S., Wu, K.-Y., and Xie, P., Interleaver technology: comparisons and applications requirements, IEEE J. Lightwave Technol., 2004, vol. 22, no. 1, pp. 281–289. https://doi.org/10.1109/JLT.2003.822832

    Article  Google Scholar 

  20. Hossein-Zadeh, M. and Vahala, K.J., Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices, IEEE Photonics Technol. Lett., 2007, vol. 19, no. 14, pp. 1045–1047. https://doi.org/10.1109/LPT.2007.899456

    Article  Google Scholar 

  21. Haunstein, H.F., Greff, W.S., Dittrich, A., Sticht, K., and Urbansky, R., Principles for electronic equalization of polarization-mode dispersion, IEEE J. Lightwave Technol., 2004, vol. 22, no. 4, pp. 1169–1182. https://doi.org/10.1109/JLT.2004.825333

    Article  Google Scholar 

  22. Darwis, R., Samijayani, O.N., Syahriar, A., and Arifianto, I., Performance analysis of dispersion compensation fiber on NRZ and RZ modulation with difference power transmission, Univ. J. Electr. Electron. Eng., 2019, vol. 6, no. 3, pp. 159–166. https://doi.org/10.13189/ujeee.2019.060310

    Article  Google Scholar 

  23. Neheeda, P., Pradeep, M., and Shaija, P.J., Analysis of WDM system with dispersion compensation schemes, Procedia Comput. Sci., 2016, vol. 93, no. 2016, pp. 647–654. https://doi.org/10.1016/j.procs.2016.07.254

  24. Nielsen, L.G., Dispersion-compensating fibers, IEEE J. Lightwave Technol., 2005, vol. 23, no. 11, pp. 3566–3579. https://doi.org/10.1109/JLT.2005.855873

    Article  Google Scholar 

  25. Arora, O. and Garg, A.K., Dispersion compensation for high speed optical networks, MIT Int. J. Electron. Communi. Eng., 2012, vol. 2, no. 1, pp. 1–4. ISSN 2230-7672

  26. Chang, C.C. and Weiner, A.M., Fiber transmission for sub-500-fs pulses using a dispersion-compensating fiber, IEEE J. Quantum Electron., 1997, vol. 33, no. 9, pp. 1455–1464. https://doi.org/10.1109/3.622623

    Article  Google Scholar 

  27. Agrawal, G., Fiber-Optic Communication Systems, Chichester: Wiley, 2002, 3rd ed. ISBN 0-471-22114-7

    Book  Google Scholar 

  28. Peucheret, C., Hanik, N., Freund, R., Molle, L., and Jeppesen, P., Optimization of pre- and post-dispersion compensation schemes for 10-Gbits/s NRZ links using standard and dispersion compensating fibers, IEEE Photonics Technol. Lett., 2000, vol. 12, no. 8, pp. 992–994. https://doi.org/10.1109/68.867985

    Article  Google Scholar 

  29. Othman, M., An analysis of 10 Gbits/s optical transmission system using fiber Bragg grating (FBG), IOSR J. Eng., 2012, vol. 2, no. 7, pp. 55–61. https://doi.org/10.9790/3021-02715561

    Article  Google Scholar 

  30. Mohammadi, S. O., Mozzaffari, S., and Shahidi, M., Simulation of a transmission system to compensate dispersion in an optical fiber by chirp gratings, Int. J. Phys. Sci., 2011, vol. 6, no. 32, pp. 7354–7360. https://doi.org/10.5897/IJPS11.1504

    Article  Google Scholar 

  31. Kumar, K., Performance analysis of dispersion compensation using fiber Bragg grating (FBG) in optical communication, Int. J. Curr. Eng. Technol., 2014, vol. 4, no. 3, pp. 1527–1531. ISSN 2277-4106

  32. Chakkour, M., Aghzout, O., Ahmed, B.A., Chaoui, F., and El Yakhloufi, M., Chromatic dispersion compensation effect performance enhancements using FBG and EDFA-wavelength division multiplexing optical transmission system, Int. J. Opt., 2017, vol. 2017, art. ID 6428972. https://doi.org/10.1155/2017/6428972

    Article  Google Scholar 

  33. Shekhar, C. and Vind, P., An improved methodology for dispersion compensation and design of dense WDM system in optical fiber communication networks, Int. J. Emerg. Technol. Adv. Eng., 2014, vol. 4, no. 1, pp. 370–375.

  34. Pelusi, M.D., WDM signal all-optical pre compensation of Kerr nonlinearity in dispersion-managed fibbers, IEEE Photonics Technol. Lett., 2013, vol. 25, no. 1, pp. 71–74. https://doi.org/10.1109/LPT.2012.2226440

    Article  Google Scholar 

  35. Optiwave photonic software. https://optiwave.com/.

  36. Meena, M.L. and Gupta, R.K., Design and comparative performance evaluation of chirped FBG dispersion compensation with DCF technique for DWDM optical transmission systems, Elsevier, Optik (Munich), 2019, vol. 188, pp. 212–224. https://doi.org/10.1016/j.ijleo.2019.05.056

    Article  Google Scholar 

  37. Chakkour, M., Hajaji, A., El Yakhloufi, M., Aghzout, O., and Chaoui, F., Design and study of EDFA-WDM optical transmission system using FBG at 10 Gbits/s chromatic despersion compensation effects, Proc. Mediterranean Conf. on Information & Communication Technologies 2015, New York: Springer-Verlag, 2015. https://www.researchgate.net/publication/330262162.

    Google Scholar 

  38. Panda, T., Sahu, A.N., and Sinha, A., Performance analysis of 50 km long fiber optic link using fiber Bragg grating for dispersion compensation, Int. Res. J. Eng. Technol., 2016, vol. 3, no. 3, pp. 95–98.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bedir Yousif, Ahmed Sh. Samrah or Rawan Waheed.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedir Yousif, Ahmed Sh. Samrah & Waheed, R. High Quality Factor and Dispersion Compensation Based on Fiber Bragg Grating in Dense Wavelength Division Multiplexing. Opt. Mem. Neural Networks 29, 228–243 (2020). https://doi.org/10.3103/S1060992X20030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X20030078

Keywords:

Navigation