Skip to main content
Log in

Antioxidant and Antiradical Properties of Resveratrol and Its Antistress Activity

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The antiradical properties and biological activity of natural polyphenol—resveratrol—are studied. The chemiluminescence method recorded high values of the antiradical activity of this drug. Using the model system, it is shown that the drug in the concentration range of 10–5  to 10–12 M prevented the activation of lipid peroxidation (LPO) in the mitochondrial membranes of pea seedlings, which could indicate the presence of antistress properties in this preparation, which are studied under conditions of water deficiency, which causes LPO and leads to mitochondrial swelling. Resveratrol seed treatment (3 × 10–5 M) under these conditions leads to a decrease in the number of swollen mitochondria and the appearance of small mitochondria, which, perhaps, is a sign of the activation of mitochondrial biogenesis. Resveratrol, which prevents LPO, helps maintain the functional state of mitochondria and activates the energy metabolism by increasing their number, which is reflected in the physiological parameters: the drug prevents a decrease in the growth rate of pea seedlings in conditions of water deficiency. Based on the data obtained, it is assumed that the drug has antistress properties in the concentration range in which it exhibits an antioxidant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. J. Takaoka, J. Faculty. Sci. 1 (3), 1 (1940).

    Google Scholar 

  2. W. Dercks and L. L. Creasy, Physiol. Mol. Plant Pathol. 34, 203 (1989).

    CAS  Google Scholar 

  3. P. Jeandet, A. C. Douillet-Breuil, R. Bessis, et al., J. Agricul. Food Chem. 50, 2731 (2002).

    CAS  Google Scholar 

  4. M. Adrian, P. Jeandet, J. Veneau, L. A. Weston, and R. Bessis, J. Chem. Ecol. 23, 1689 (1997).

    CAS  Google Scholar 

  5. J. A. Baur and D. A. Sinclair, Nature (London, U.K.) 425, 191 (2003).

    Google Scholar 

  6. M. Athar, J. H. Back, L. Kopelovich, et al., Arch. Biochem. Biophys. 486, 95 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. H. S. Mahal and T. Mukherjee, Res. Chem. Intermed. 32, 59 (2006).

    CAS  Google Scholar 

  8. W. R. Leifert and M. Y. Abeywardena, Nutr. Res. 28, 842 (2008).

    CAS  PubMed  Google Scholar 

  9. V. Roman, C. Billard, C. Kern, et al., Br. J. Haematol. 117, 842 (2002).

    CAS  PubMed  Google Scholar 

  10. E. Wenzel and V. Somoza, Mol. Nutrit. Food Res. 49, 472 (2005).

    CAS  Google Scholar 

  11. X. Vitrac, A. Desmouliére, B. Brouillaud, et al., Life Sci. 72, 2219 (2003).

    CAS  PubMed  Google Scholar 

  12. N. L. Tailor, D. A. Day, and A. H. Millar, J. Exp. Bot. 55 (394), 1 (2003).

    Google Scholar 

  13. C. Moreira, A. M. Silva, M. S. Santos, and V. A. Sardão, Food Chem. Toxicol. 53, 18 (2013).

    CAS  PubMed  Google Scholar 

  14. A. Ahmad, F. A. Syed, S. Singh, and S. M. Hadi, Toxicol. Lett. 159, 1 (2005).

    CAS  PubMed  Google Scholar 

  15. N. M. Emanuel’ and D. Gal, Oxidation of Ethylbenzene: A Model Reaction (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  16. V. Ya. Shlyapintokh, O. N. Karpukhin, L. M. Postnikov, et al., Chemiluminescence Methods of Investigation of Slow Chemical Processes (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  17. I. F. Rusina, O. N. Karpukhin, and O. T. Kasaikina, Russ. J. Phys. Chem. B 7, 463 (2013).

    CAS  Google Scholar 

  18. Organic Solvents. Physical Properties and Methods of Purification, Ed. by A. Weissberger, E. Proskauer, J. Riddik, and E. Toops (Interscience, New York, 1955).

    Google Scholar 

  19. V. A. Belyakov, R. F. Vasil’ev, and G. F. Fedorova, Kinet. Catal. 45, 329 (2004).

    CAS  Google Scholar 

  20. V. N. Popov, E. K. Ruge, and A. A. Starkov, Biochemistry (Moscow) 68, 747 (2003).

    CAS  Google Scholar 

  21. B. I. Fletcher, C. D. Dillard, and A. L. Tappel, Anal. Biochem. 52, 1 (1973).

    CAS  PubMed  Google Scholar 

  22. D. B. Zorov, N. K. Isaev, E. Yu. Plotnikov, L. D. Zorova, E. V. Stelmashook, A. K. Vasileva, A. A. Arkhangelskaya, and T. G. Khrjapenkova, Biochemistry (Moscow) 72, 1115 (2007).

    CAS  Google Scholar 

  23. I. Zhigacheva, I. Generozova, A. Shugaev, et al., Ann. Res. Rev. Biol. 5, 85 (2015).

    Google Scholar 

  24. A. V. Khvan, in Biology Issues (Blagoveshchensk, 1969), p. 104 [in Russian].

    Google Scholar 

  25. N. A. Shugaeva, E. I. Vyskrebentseva, S. O. Orekhova, and A. G. Shugaev, Fiziol. Rast. 54, 373 (2007).

    Google Scholar 

  26. S. M. Claypool, J. M. McCaffery, and C. M. Koehler, J. Cell Biol. 174, 379 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. V. I. Binyukov, E. M. Mil’, I. V. Zhigacheva, A. A. Albantova, I. P. Generozova, A. G. Shugaev, S. G. Fattakhov, and A. I. Konovalov, Dokl. Biochem. Biophys. 446, 220 (2012).

    CAS  PubMed  Google Scholar 

  28. M. R. De-Oliveira, S. F. Nabavi, A. Manay, et al., Biochem. Biophys. Acta 1860, 727 (2016).

    CAS  PubMed  Google Scholar 

  29. L. Zhang, Yinshu Li, Da-Xing, and Caiji Gao, J. Exp. Bot. 60, 2073 (2009).

    CAS  PubMed  Google Scholar 

  30. I. Scott and D. C. Logan, New Phytol. 177, 90 (2008).

    CAS  PubMed  Google Scholar 

  31. D. S. Selote, S. Bharti, and R. Khanna-Chopra, Biochem. Biophys. Res. Commun. 314, 724 (2004).

    CAS  PubMed  Google Scholar 

  32. G. Miller, N. Suzuki, S. Ciftci-Yilmaz, and R. Mittler, Plant, Cell Environ. 33, 453 (2010).

    CAS  Google Scholar 

  33. I. P. Generozova and A. G. Shugaev, Fiziol. Rast. 59, 262 (2012).

    Google Scholar 

  34. R. Zini, C. Morin, A. Bertelli, et al., Drugs Experimen. Clin. Res. 25, 87 (1999).

    CAS  Google Scholar 

  35. J. R. Jackson, M. J. Ryan, Y. Hao, and S. E. Alway, Am. J. Physiol. Regulat. Integr. Comp. Physiol. 299, R1572 (2010).

    CAS  Google Scholar 

  36. A. Csiszar, N. Labinskyy, A. Podlutsky, et al., Am. J. Physiol. Heart Circ. Physiol. 294, H2721 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Z. Ungvari, W. E. Sonntag, R. de Cabo, J. A. Baur, and A. Csisrar, Exer. Sport Sci. Rev. 39, 128 (2011).

    Google Scholar 

  38. N. M. Emanuel’, E. T. Denisov, and Z. K. Maizus, Chain Reactions of Liquid-Phase Oxidation of Hydrocarbons (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  39. N. A. Azatyan, G. V. Karpukhina, I. S. Belostotskaya, and N. M. Komissarova, Neftekhimiya 33, 435 (1973).

    Google Scholar 

Download references

Funding

This work was carried out as part of state task 0082-2018-0006 (nos. AAAA-A18-118020890097-1, 0084-2014-0004) of the Federal Agency for Scientific Organizations. Registration no. 01201-253-310 at the Center for Information Technologies and Systems of Executive Authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zhigacheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigacheva, I.V., Binyukov, V.I., Rusina, I.F. et al. Antioxidant and Antiradical Properties of Resveratrol and Its Antistress Activity. Russ. J. Phys. Chem. B 14, 678–684 (2020). https://doi.org/10.1134/S1990793120040120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120040120

Keywords:

Navigation