Skip to main content
Log in

Self-Diffusion in 57Fe/natFe Multilayers by In Situ Neutron Reflectometry

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Time-of-flight in situ neutron reflectometry (i-NR) on Si/[57Fe(x nm)/natFe(x nm)]4/Pt with x = 4 and 8 nm multilayers during consecutive heat treatments at 423, 448, 473 and 498 K reveal an unexpected rearrangement of free volumes and an interface smoothening in the isotopic Fe multilayer below 473 K, before the regime of regular Bragg intensity decay starts. The bilayer period dependence of the diffusivities at around 500 K, however, does not follow predictions of Harrison’s theory for the C-type regime representing grain boundary diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. H. Mehrer, Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Ed. by M. Cardona (Springer, Berlin, 2007).

    Google Scholar 

  2. S. V. Divinski, M. Lohmann, and C. Herzig, Acta Mater. 49, 249 (2001).

    Article  CAS  Google Scholar 

  3. L. G. Harrison, Trans. Faraday Soc. 57, 1191 (1961).

    Article  CAS  Google Scholar 

  4. H. Schmidt, S. Chakravarty, M. Jiang, et al., J. Mater. Sci. 47, 4087 (2012).

    Article  CAS  Google Scholar 

  5. M. Gupta, A. Gupta, S. Chakravarty, and Th. Gutberlet, Defect Diffus. Forum 237–240, 548 (2005).

    Google Scholar 

  6. J. Speakman, P. Rose, J. A. Hunt, et al., J. Magn. Magn. Mater. 156, 411 (1996).

    Article  CAS  Google Scholar 

  7. J. Gong, N. Paul, B. Nagy, et al., RSC Adv. 7, 9573 (2017).

    Article  CAS  Google Scholar 

  8. K. P. Andreasen, N. Schell, T. Jensen, et al., Mater. Res. Soc. Symp. Proc. 788, 49 (2004).

    Google Scholar 

  9. R. Kampmann, M. Haese-Seillera, V. Kudryashov, et al., Phys. B (Amsterdam, Neth.) 385–386, 1161 (2006).

    Article  Google Scholar 

  10. A. Tiwari, M. K. Tiwari, M. Gupta, H.-C. Wille, and A. Gupta, Phys. Rev. B 99, 205413 (2019).

    Article  CAS  Google Scholar 

  11. A. Paul and J. Wingbermühle, Appl. Surf. Sci. 252, 8151(2006).

    Article  CAS  Google Scholar 

  12. J. Gong, N. Paul, B. Nagy, et al., J. Appl. Crystallogr. 49, 1682 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is based upon experiments performed at the REFSANS instrument operated by Helmholtz-Zentrum Geesthacht (HZG) at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. Free beamtime for Proposal no. 11158 is gratefully acknowledged. Thanks to Gaetano Mangiapia of GEMS HZG for his help in experimental data organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitesh Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szilárd Sajti, Bottyán, L., Moulin, JF. et al. Self-Diffusion in 57Fe/natFe Multilayers by In Situ Neutron Reflectometry. J. Surf. Investig. 14 (Suppl 1), S1–S4 (2020). https://doi.org/10.1134/S1027451020070460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020070460

Keywords:

Navigation