Skip to main content
Log in

Plasma Scraping of 14C Surface Nanolayer Formed by Neutron Fluence of Graphite Reactor

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this article, we consider some mechanisms of the formation of a nanometer-thick surface layer enriched with 14C isotope. Main channel of 14C surface accumulation is believed to be the neutron capture reaction with 14N atoms of the cooling gas mixture during operation of uranium-graphite reactors, in particular, a high-power channel-type reactor (RBMK-type reactor). For the “dry” collection of thin layers enriched in 14C isotope from the irradiated graphite surface of graphite-type nuclear reactor and further compact burial, we propose argon plasma discharge technology based on the special type of a microdischarge at a high pressure, up to atmospheric pressure. In addition, there are some important technical applications, such as brachytherapy medicine or new beta-voltaic batteries, which require the deposition of thin layers of beta-active isotopes (e.g. 14C) with nanoscale precision to form a controlled output energy spectrum of secondary electrons. The proposed technological scheme can potentially be used both for graphite deactivation in the irradiated reactor during decommissioning of uranium-graphite reactors, and at the same time for fabrication of highly concentrated 14C nanosized coatings for use in radionuclide medicine and beta-voltaic batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. LaBrier and M. L. Dunzik-Gougar, J. Nucl. Mater. 448, 113 (2014). https://doi.org/10.1016/j.jnucmat.2014.01.041

    Article  CAS  Google Scholar 

  2. M. L. Dunzik-Gougar and T. E. Smith, J. Nucl. Mater. 451, 328 (2014). https://doi.org/10.1016/j.jnucmat.2014.03.018

    Article  CAS  Google Scholar 

  3. A. O. Pavluk, S. G. Kotlyarevskiy, E. V. Bespala, and Yu. R. Bespala, Izv. Vyssh. Uchebn. Zaved., Yad. Energ. 1, 87 (2018). https://doi.org/10.26583/npe.2018.1.09

    Article  Google Scholar 

  4. D. Vulpius, K. Baginski, C. Fischer, and B. Thomauske, J. Nucl. Mater. 438, 163 (2013). https://doi.org/10.1016/j.jnucmat.2013.02.027

    Article  CAS  Google Scholar 

  5. A. S. Petrovskaya, A. B. Tsyganov, A. Yu. Kladkov, S. V. Surov, M. R. Stakhiv, and V. A. Polischuk, Proc. Int. Conf. on Electrical Engineering and Photonics (IEEE,2018). (Saint-Petersburg, 2018), p. 230. https://doi.org/10.1109/EExPolytech.2018.8564400

  6. A. S. Petrovskaya, M. R. Stakhiv, and A. B. Tsyganov, R.F. Patent Application No. 2 018 140 999 (21 November 2018) / PCT Patent application No. PCT/RU2019/000816 (November 14, 2019).

  7. Y. M. Gledenov, V. I. Salatski, and P. V. Seyshev, Z. Phys. A: Hadrons Nucl. 346, 307 (1993).

    Article  CAS  Google Scholar 

  8. S. B. Dubovichenko, A. V. Dzhazairov-Kakhramanov, and N. A. Burkova, J. Nucl. Part. Phys. 3 (4), 108 (2013). https://doi.org/10.5923/j.jnpp.20130304.08

    Article  Google Scholar 

  9. J. Wagemans, C. Wagemans, R. Bieber, and P. Geltenbort, Phys. Rev. C: Nucl. Phys. 58, 2840 (1998). https://doi.org/10.1103/PhysRevC.58.2840

    Article  CAS  Google Scholar 

  10. N. A. Dollezhal’ and I. Ya. Emel’yanov, A Channel Nuclear Power Reactor (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  11. R. Takahashi, M. Toyahara, and S. Maruki, in IAEA Technical Committee Meeting on Nuclear Graphite Waste Management (Manchester, 1999), p. 176.

    Google Scholar 

  12. A. S. Antropov, E. V. Garin, and V. V. Petrov, Nucl. Radiat. Saf. 4, 42 (2000).

    Google Scholar 

  13. N. Kueter, M. D. Lilley, M. W. Schmidt, and S. M. Bernasconi, Geochim. Cosmochim. Acta 253, 290 (2019). https://doi.org/10.1016/j.gca.2019.03.020

    Article  CAS  Google Scholar 

  14. A. S. Petrovskaya, A. Yu. Kladkov, S. V. Surov, and A. B. Tsyganov, Vopr. At. Nauki Tekh., Ser.: Yad. Konstanty 4, 185 (2018).

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research, project no. 18-32-00679 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petrovskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovskaya, A., Kladkov, A., Surov, S. et al. Plasma Scraping of 14C Surface Nanolayer Formed by Neutron Fluence of Graphite Reactor. J. Surf. Investig. 14 (Suppl 1), S175–S178 (2020). https://doi.org/10.1134/S1027451020070393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020070393

Keywords:

Navigation