Skip to main content
Log in

Nonminimal Spin-Field Interaction of the Classical Electron and Quantization of Spin

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We shortly describe classical models of spinning electron and list a number of theoretical issues where these models turn out to be useful. Then we discuss the possibility to extend the range of applicability of these models by introducing an interaction,that forces the spin to align up or down relative to its precession axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. Consider either frozen particle in constant magnetic field, or on circular trajectory in the Coulomb electric and constant magnetic fields.

  2. The construction can be resumed as follows: variational problem with the Lagrangian \(L = {{\dot {x}}^{2}} + \mathop {\dot {\omega }}\nolimits^2 - \sqrt {{{{({{{\dot {x}}}^{2}} + {{{\dot {\omega }}}^{2}})}}^{2}} - 4{{{(\dot {x}\dot {\omega })}}^{2}}} \) implies the constraint \(({\mathbf{p}},\pi ) \equiv \left( {\tfrac{{\partial L}}{{\partial {\mathbf{\dot {x}}}}},\tfrac{{\partial L}}{{\partial \dot {\omega }}}} \right) = 0\) as one of the extreme conditions.

  3. In the language of Poisson geometry this equation means that \({{S}^{{\mu \nu }}}{{p}_{\nu }}\) are Casimir functions of the Poisson structure.

REFERENCES

  1. G. E. Uhlenbeck and G. E. Goudsmit, “Spinning electrons and structure of spectra,” Nature (London, U.K.) 117, 264–265 (1926).

    Article  ADS  Google Scholar 

  2. J. Frenkel, “Spinning electrons,” Nature (London, U.K.) 117, 653–654 (1926).

    Article  ADS  Google Scholar 

  3. L. H. Thomas, “The kinematics of an electron with an axis,” Philos. Mag. J. Sci. 3, 1 (1927).

    Article  Google Scholar 

  4. W. Pauli, “On the quantum mechanics of magnetic electrons,” Zeitschr. Phys. 43, 601–623 (1927).

    Article  ADS  Google Scholar 

  5. A. A. Deriglazov and W. G. Ramírez, “Recent progress on the description of relativistic spin: vector model of spinning particle and rotating body with gravimagnetic moment in general relativity,” Adv. Math. Phys. 2017, 7397159 (2017); arXiv: 1710.07135.

  6. H. C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968).

    Google Scholar 

  7. A. J. Hanson and T. Regge, “The relativistic spherical top,” Ann. Phys. 87, 498–566 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. A. Deriglazov, “Lagrangian for the Frenkel electron,” Phys. Lett. B 736, 278–282 (2014); arXiv: 1406.6715.

    Article  ADS  Google Scholar 

  9. A. A. Deriglazov and A. M. Pupasov-Maksimov, “Relativistic corrections to the algebra of position variables and spin-orbital interaction,” Phys. Lett. B 761, 207–212 (2016).

    Article  ADS  Google Scholar 

  10. M. H. Pryce, “The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles,” Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 195, 62 (1948).

  11. A. A. Deriglazov and A. M. Pupasov-Maksimov, “Lagrangian for Frenkel electron and position’S non-commutativity due to spin,” Eur. Phys. J. C 74, 3101 (2014).

    Article  Google Scholar 

  12. A. A. Deriglazov and D. M. Tereza, “Covariant version of Pauli hamiltonian, spin-induced non commutativity, Thomas precession and precession of spin,” Phys. Rev. D: Part. Fields 100, 105009 (2019); arXiv: 1910.11140.

  13. W. G. Dixon, “A covariant multipole formalism for extended test bodies in general relativity,” Nuovo Cim. A 34, 317 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  14. U. Nucamendi, R. Becerril, and P. Sheoran, “Bounds on spinning particles in their innermost stable circular orbits around rotating braneworld black hole,” arXiv: 1910.00156.

  15. B. Toshmatov and D. Malafarina, “Spinning test particles in the γ spacetime,” Phys. Rev. D: Part. Fields 100, 104052 (2019); arXiv: 1910.11565.

  16. R. Plyatsko and M. Fenyk, “On physics of a highly relativistic spinning particle in the gravitational field,” arXiv: 1905.04342.

  17. I. B. Khriplovich, “Spinning particle in a gravitational field,” Sov. Phys. JETP 69, 217–219 (1989).

    Google Scholar 

  18. W. G. Ramírez and A. A. Deriglazov, “Relativistic effects due to gravimagnetic moment of a rotating body,” Phys. Rev. D: Part. Fields 96, 124013 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. P. Feynman, Quantum Electrodynamics (W. A. Benjamin, New York, 1961).

    Google Scholar 

  20. L. L. Foldy and S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit,” Phys. Rev. 78, 29 (1950).

    Article  ADS  Google Scholar 

  21. A. A. Deriglazov, “Spinning-particle model for the Dirac equation and the relativistic Zitterbewegung,” Phys. Lett. A 376, 309–313 (2012); arXiv: 1106.5228.

    Article  ADS  Google Scholar 

  22. A. J. Silenko, “Zitterbewegung of bosons,” arXiv: 1912.01043.

  23. A. J. Silenko, “General properties of the Foldy-Wouthuysen transformation and applicability of the corrected original Foldy–Wouthuysen method,” Phys. Rev. A 93, 022108 (2016); arXiv: 1602.02246.

Download references

FUNDING

The work of A. A. D. has been supported by the Brazilian foundation CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil), and by Tomsk State University Competitiveness Improvement Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Deriglazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deriglazov, A.A. Nonminimal Spin-Field Interaction of the Classical Electron and Quantization of Spin. Phys. Part. Nuclei Lett. 17, 738–743 (2020). https://doi.org/10.1134/S1547477120050131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120050131

Keywords:

Navigation