Skip to main content
Log in

Graded Geometry, Tensor Galileons and Duality

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We review some fundamental aspects of mixed symmetry tensor gauge theories using a formulation based on graded geometry. In particular, we are able to construct kinetic, mass and Galileon-type higher derivative interaction terms for such fields. The resulting elegant geometric formulas allow for shared features of these theories to be highlighted and for possible interaction terms to be classified. In addition, we argue that this formalism is very useful in studying dualities. In particular, we construct a universal first order Lagrangian that may serve as the starting point for the off shell dualizations of differential form gauge theories and generalized gravitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. Chatzistavrakidis, F. S. Khoo, D. Roest, and P. Schupp, “Tensor Galileons and gravity,” J. High Energy Phys. 1703, 070 (2017). https://doi.org/10.1007/JHEP03(2017)070

  2. A. Chatzistavrakidis, G. Karagiannis, and P. Schupp, “A unified approach to standard and exotic dualizations through graded geometry,” Commun. Math. Phys. (2020). arXiv: 1908.11663 [hep-th]. https://doi.org/10.1007/s00220-020-03728-x

  3. D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys. 12, 498 (1971). https://doi.org/10.1063/1.1665613

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10, 363 (1974). https://doi.org/10.1007/BF01807638

    Article  MathSciNet  Google Scholar 

  5. A. Nicolis, R. Rattazzi, and E. Trancherini, “The Galileon as a local modification of gravity,” Phys. Rev. D 79, 064036 (2009). https://doi.org/10.1103/PhysRevD.79.064036

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Deffayet, S. Deser, and G. Esposito-Farese, “Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors,” Phys. Rev. D 80, 0640155 (2009). https://doi.org/10.1103/PhysRevD.80.064015

    Article  Google Scholar 

  7. C. Deffayet, S. Deser, and G. Esposito-Farese, “Arbitrary p-form Galileons,” Phys. Rev. D 82, 061501 (2010). https://doi.org/10.1103/PhysRevD.82.061501

    Article  ADS  Google Scholar 

  8. T. Curtright, “Generalized Gauge fields,” Phys. Lett. B 165, 304 (1985). https://doi.org/10.1016/0370-2693(85)91235-3

    Article  ADS  Google Scholar 

  9. C. M. Hull, “Duality in gravity and higher spin Gauge fields,” J. High Energy Phys. 0109, 027 (2001). https://iopscience.iop.org/article/10.1088/1126-6708/2001/09/027

  10. P. C. West, “E(11) and M theory,” Class. Quant. Grav. 18, 4443 (2001). https://doi.org/10.1088/0264-9381/18/21/305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. P. de Medeiros and C. M. Hull, “Exotic tensor gauge theory and duality,” Commun. Math. Phys. 235, 255 (2003). https://doi.org/10.1007/s00220-003-0810-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. N. Boulanger, P. Sundell, and P. West, “Gauge fields and infinite chains of dualities,” J. High Energy Phys. 1509, 19 (2015). https://doi.org/10.1007/JHEP09(2015)1922

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Boulanger, P. P. Cook, and D. Ponomarev, “Off-shell hodge dualities in linearised gravity and E11,” J. High Energy Phys. 1209, 089 (2012). https://doi.org/10.1007/JHEP09(2012)089

  14. N. Boulanger, S. Cnockaert, and M. Henneaux, “A note on spin s duality,” J. High Energy Phys. 0306, 060 (2003). https://iopscience.iop.org/article/10.1088/ 1126-6708/2003/06/060

  15. E. A. Bergshoeff, O. Hohm, V. A. Penas, and F. Riccioni, “Dual double field theory,” J. High Energy Phys. 1606, 026 (2016). https://doi.org/10.1007/JHEP06(2016)026

  16. A. Chatzistavrakidis and G. Karagiannis, “Relation between standard and exotic duals of differential forms,” Phys. Rev. D 100, 121902(R). arXiv: 1911.00419 [hep-th]. https://doi.org/10.1103/PhysRevD.100.121902

  17. M. Henneaux, V. Lekeu, and A. Leonard, “A note on the double dual graviton,” J. Phys. A 53, 014002 (2020). https://iopscience.iop.org/article/10.1088/1751-8121/ ab56ed

    Article  ADS  MathSciNet  Google Scholar 

  18. J. de Boer and M. Shigemori, “Exotic branes in string theory,” Phys. Rep. 532, 65 (2013). https://doi.org/10.1016/j.physrep.2013.07.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. F. Riccioni and P. C. West, “Dual fields and E(11),” Phys. Lett. B 645, 286 (2007). https://doi.org/10.1016/j.physletb.2006.12.050

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. P. P. Cook and P. C. West, “G+++ and brane solutions,” Nucl. Phys. B 705, 111 (2005). https://doi.org/10.1016/j.nuclphysb.2004.10.058

    Article  ADS  MATH  Google Scholar 

  21. P. C. West, “E(11) origin of brane charges and U-duality multiplets,” J. High Energy Phys. 0408, 052 (2004). https://iopscience.iop.org/article/10.1088/1126-6708/2004/08/052

  22. A. Chatzistavrakidis and F. F. Gautason, “U-dual branes and mixed symmetry tensor fields,” Fortsch. Phys. 62, 743 (2014). https://doi.org/10.1002/prop.201400023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Chatzistavrakidis, F. F. Gautason, G. Moutsopoulos, and M. Zagermann, “Effective actions of nongeometric five-branes,” Phys. Rev. D 89, 066004 (2014). https://journals.aps.org/prd/abstract/10.1103/PhysRevD. 89.066004

    Article  ADS  Google Scholar 

  24. E. A. Bergshoeff and F. Riccioni, “String solitons and T-duality,” J. High Energy Phys. 1105, 131 (2011). https://doi.org/10.1007/JHEP05(2011)131

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E. A. Bergshoeff and F. Riccioni, “D-brane Wess–Zumino terms and U-duality,” J. High Energy Phys. 1011, 139 (2010). https://doi.org/10.1007/JHEP11(2010)139

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M. Alexandrov, A. Schwarz, O. Zaboronsky, and M. Kontsevich, “The geometry of the master equation and topological quantum field theory,” Int. J. Mod. Phys. A 12, 1405 (1997). https://doi.org/10.1142/S0217751X97001031

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. Qiu and M. Zabzine, “Introduction to graded geometry, Batalin–Vilkovisky formalism and their applications,” Arch. Math. 47, 143 (2011); arxiv:1105.2680.

    MathSciNet  MATH  Google Scholar 

  28. P. de Medeiros and C. M. Hull, “Geometric second order field equations for general tensor gauge fields,” J. High Energy Phys. 0305, 019 (2003). https://iopscience.iop.org/article/10.1088/1126-6708/2003/05/019

  29. C. Deffayet and D. A. Steer, “A formal introduction to Horndeski and Galileon theories and their generalizations,” Class. Quantum Grav. 30, 214006 (2013). https://iopscience.iop.org/article/10.1088/0264-9381/30/ 21/214006

  30. C. Deffayet, G. Esposito-Farese, and A. Vikman, “Covariant Galileon,” Phys. Rev. D 79, 084003 (2009). https://doi.org/10.1103/PhysRevD.79.084003

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to F.S. Khoo and D. Roest for collaboration in the part of this work that refers to tensor Galileons. A.Ch. and G.K. would also like to thank the organizers of the workshop “Supersymmetries and Quantum Symmetries—SQS’19”.

Funding

The work of A.Ch. and G.K. is supported by the Croatian Science Foundation Project “New Geometries for Gravity and Spacetime” (IP-2018-01-7615), and also partially supported by the European Union through the European Regional Development Fund—The Competitiveness and Cohesion Operational Programme (KK.01.1.1.06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Chatzistavrakidis, G. Karagiannis or P. Schupp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzistavrakidis, A., Karagiannis, G. & Schupp, P. Graded Geometry, Tensor Galileons and Duality. Phys. Part. Nuclei Lett. 17, 718–723 (2020). https://doi.org/10.1134/S1547477120050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120050106

Navigation