Skip to main content
Log in

Velocities of Longitudinal and Transverse Elastic Vibrations in Superionic Silver Sulfide

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It has been shown that the heat capacity of argentite β-Ag2S, which is nanocrystalline superionic silver sulfide, includes an additional positive contribution caused by the existence of the lower and upper bounds of the phonon spectrum because of a small size of particles. The estimate of this contribution from experimental data on the difference of the heat capacities of nano- and coarse-crystalline argentite β-Ag2S in the region of its existence 470–850 K makes it possible to determine for the first time the velocities of propagation of longitudinal and transverse elastic oscillations cl and ct and the elastic rigidity constants c11, c12, and c44. It has been found that an increase in the temperature results in a decrease in the elastic characteristics of argentite. The directions of the crystal lattice of argentite corresponding to the maximum and minimum elastic moduli have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, 2018).

    Google Scholar 

  2. W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971).

    Google Scholar 

  3. S. I. Sadovnikov, A. V. Chukin, A. A. Rempel’, and A. I. Gusev, Phys. Solid State 58, 30 (2016).

    ADS  Google Scholar 

  4. S. I. Sadovnikov and A. I. Gusev, JETP Lett. 109, 584 (2019).

    ADS  Google Scholar 

  5. S. I. Sadovnikov, A. I. Gusev, A. V. Chukin, and A. A. Rempel, Phys. Chem. Chem. Phys. 18, 4617 (2016).

    Google Scholar 

  6. S. I. Sadovnikov and A. I. Gusev, Phys. Solid State 59, 1887 (2017).

    ADS  Google Scholar 

  7. S. I. Sadovnikov and A. I. Gusev, J. Therm. Anal. Calorim. 131, 1155 (2018).

    Google Scholar 

  8. A. I. Gusev and S. I. Sadovnikov, Thermochim. Acta 660, 1 (2018).

    Google Scholar 

  9. S. I. Sadovnikov, A. V. Ishchenko, and I. A. Weinstein, J. Alloys Compd. 831, 154846 (2020).

    Google Scholar 

  10. S. I. Sadovnikov and I. A. Balyakin, Compd. Mater. Sci. 184, 109821 (2020).

    Google Scholar 

  11. R. Khenata, A. Bouhemadou, M. Sahnoun, A. H. Reshak, H. Baltache, and M. Rabah, Compd. Mater. Sci. 38, 29 (2006).

    Google Scholar 

  12. S. I. Sadovnikov and A. I. Gusev, J. Exp. Theor. Phys. 129, 1005 (2019).

    ADS  Google Scholar 

  13. http://progs.coudert.name/elate/mp?query=mp-556225.

  14. http://progs.coudert.name/elate/mp?query=mp-36216.

  15. R. Gaillac, P. Pullumbi, and F.-X. Coudert, J. Phys.: Condens. Matter 28, 275201 (2016).

    Google Scholar 

  16. Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  17. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int. Science, Cambridge, 2004).

    Google Scholar 

  18. S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 610, 196 (2014).

    Article  Google Scholar 

  19. C. M. Perrott and N. H. Fletcher, J. Chem. Phys. 50, 2344 (1969).

    Article  ADS  Google Scholar 

  20. F. Grønvold and E. F. Westrum, J. Chem. Therm. 18, 381 (1986).

    Google Scholar 

  21. R. H. Bolt, J. Acoust. Soc. Am. 10, 228 (1939).

    ADS  Google Scholar 

  22. D.-Y. Maa, J. Acoust. Soc. Am. 10, 235 (1939).

    ADS  Google Scholar 

  23. E. W. Montrol, J. Chem. Phys. 18, 183 (1950).

    ADS  Google Scholar 

  24. Ya. A. Iosilevskii, Phys. Status Solidi B 60, 39 (1973).

    ADS  Google Scholar 

  25. M. G. Burt, J. Phys. C: Solid State Phys. 6, 855 (1973).

    ADS  Google Scholar 

  26. G. H. Comsa, D. Heitkamp, and H. S. Räde, Solid State Commun. 24, 547 (1977).

    ADS  Google Scholar 

  27. S. I. Sadovnikov, Phys. Solid State 60, 2546 (2018).

    ADS  Google Scholar 

  28. G. A. Alers, in Physical Acoustics. Principles and Methods, Lattice Dynamics, Ed. by W. P. Mason (Academic, New York, London, 1965), Vol. 3, part B, ch. 1, p. 12.

  29. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, Oxford, New York, 2005), p. 106.

    Google Scholar 

  30. T. Gnäupel-Herold, P. C. Brand, and H. J. Prask, J. Appl. Crystallogr. 31, 929 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 3, pp. 203–208.

Funding

This work was supported by the Russian Science Foundation (project no. 19-79-10101) and was performed at the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences (Yekaterinburg, Russia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I. Velocities of Longitudinal and Transverse Elastic Vibrations in Superionic Silver Sulfide. Jetp Lett. 112, 193–198 (2020). https://doi.org/10.1134/S0021364020150096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020150096

Navigation