Skip to main content
Log in

Interaction of Two Nearly Contacting Gas Bubbles Pulsating in a Liquid in an Alternating Pressure Field

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The conditions for the coalescence of two pulsating spherical bubbles in a liquid in a weak low-frequency acoustic pressure field, as well as the conditions for absence of such a fusion, have been studied. Since the frequency of the pressure field is much lower than natural frequencies, the bubbles pulsate with identical relative amplitudes and phases. At large distances, bubbles approach according to the Bjerknes law. However, viscous forces near a contact can compensate the attraction force and bubbles do not coalesce. It has been shown that bubbles coalesce when the ratio of radii is smaller than 3; otherwise, periodic oscillations are established at a small gap between the surfaces of bubbles and coalescence does not occur. These theoretical results have been confirmed by existing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. O. Oolman and H. W. Blanch, Chem. Eng. Comm. 43, 237 (1986).

    Article  Google Scholar 

  2. H. Feng, G. V. Barbosa-Cánovas, and J. Weiss, Ultrasound Technologies for Food and Bioprocessing (Springer, New York, 2011).

    Book  Google Scholar 

  3. Y. Chen, G. Xie, J. Chang, J. Grundy, and Q. Liu, Fuel 248, 38 (2019).

    Article  Google Scholar 

  4. B. V. Deryagin, S. S. Dukhin, and N. N. Rulev, Microflotation: Water Treatment, Enrichment (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  5. C. C. Coussios and R. A. Roy, Ann. Rev. Fluid Mech. 40, 395 (2008).

    Article  ADS  Google Scholar 

  6. H. Lamb, Hydrodynamics (Cambridge Univ., Cambridge, 1993).

    MATH  Google Scholar 

  7. W. M. Hicks, Philos. Trans. R. Soc. 171, 455 (1880).

    Article  ADS  Google Scholar 

  8. V. Bjerknes, Fields of Force: Supplementary Lectures, Applications to Meteorology (The Columbia Univ. Press, New York, 1906).

    Google Scholar 

  9. R. A. Herman, Quart. J. Pure Appl. Math. 87, 204 (1887).

    Google Scholar 

  10. V. F. Kazantsev, Sov. Phys. Dokl. 4, 1250 (1960).

    ADS  Google Scholar 

  11. L. A. Crum, J. Acoust. Soc. Am. 57, 1363 (1975).

    Article  ADS  Google Scholar 

  12. J. Jiao, Y. He, T. Leong, S. E. Kentish, M. Ashokkumar, R. Manasseh, and J. Lee, J. Phys. Chem. B 117, 12549 (2013).

    Article  Google Scholar 

  13. J. Jiao, Y. He, S. E. Kentish, M. Ashokkumar, R. Manasseh, and J. Lee, Ultrasonics 58, 35 (2015).

    Article  Google Scholar 

  14. J. Jiao, Y. He, K. Yasui, S. E. Kentish, M. Ashokkumar, R. Manasseh, and J. Lee, Ultrason. Sonochem. 22, 70 (2015).

    Article  Google Scholar 

  15. S. Cleve, M. Guédra, C. Inserra, C. Mauger, and P. Blanc-Benon, Phys. Rev. E 98, 033115 (2018).

    Article  ADS  Google Scholar 

  16. E. A. Zabolotskaya, Sov. Phys. Acoust. 30, 365 (1984).

    Google Scholar 

  17. A. Harkin, T. J. Kaper, and A. L. I. Nadim, J. Fluid Mech. 445, 377 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Mettin, I. Akhatov, U. Parlitz, C. D. Ohl, and W. Lauterborn, Phys. Rev. E 56, 2924 (1997).

    Article  ADS  Google Scholar 

  19. A. A. Doinikov, Phys. Rev. E 64, 026301 (2001).

    Article  ADS  Google Scholar 

  20. G. N. Kuznetsov and I. E. Shchukin, Sov. Phys. Acoust. 18, 466 (1972).

    Google Scholar 

  21. H. N. Oguz and A. Prosperetti, J. Fluid Mech. 218, 143 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. A. Aganin and A. I. Davletshin, Mat. Model. 21(9), 89 (2009).

    Google Scholar 

  23. A. A. Doinikov and A. Bouakaz, Phys. Rev. E 92, 043001 (2015).

    Article  ADS  Google Scholar 

  24. Yu. A. Kobelev, L. A. Ostrovskii, and A. M. Sutin, JETP Lett. 30, 395 (1979).

    ADS  Google Scholar 

  25. P. L. Marston, E. H. Trinh, J. Depew, and J. Asaki, in Bubble Dynamics and Interface Phenomena, Ed. by J. R. Blake, J. M. Boulton-Stone, and N. H. Thomas (Kluwer Acad., Dordrecht, 1994), p. 343.

  26. A. G. Petrov, Fluid Dyn. 46, 579 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. V. Sanduleanu and A. G. Petrov, J. Phys.: Conf. Ser. 656, 012035 (2015).

    Google Scholar 

  28. O. V. Voinov and A. G. Petrov, Itogi Nauki Tekh., Mekh. Zhidk. Gaza 10, 86 (1976).

    Google Scholar 

  29. S. V. Sanduleanu, Fluid Dyn. 55 (7) (2020) (in press).

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1988; Pergamon, New York, 1988).

    Google Scholar 

  31. D. J. Jeffrey, Mathematika 29, 58 (1982).

    Article  MathSciNet  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  33. A. G. Petrov, Analytical Hydrodynamics (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  34. S. V. Sanduleanu, J. Appl. Mech. Tech. Phys. 61(4), 532 (2020).

    Article  Google Scholar 

  35. S. Michelin, G. Gallino, F. Gallaire, and E. Lauga, J. Fluid Mech. 860, 172 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Z. Zinchenko, J. Appl. Math. Mech. 42(5), 1046 (1978).

    Article  Google Scholar 

  37. S. V. Sanduleanu, in Waves and Vortices in Complex Media, Proceedings of the 10th International Conference-School of Young Scientists, December 3–5, 2019 (Premium-print, Moscow, 2019).

  38. S. Michelin, E. Guérin, and E. Lauga, Phys. Rev. Fluids 3, 043601 (2018).

    Article  ADS  Google Scholar 

  39. S. V. Sanduleanu and A. G. Petrov, Dokl. Phys. 63, 517 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sanduleanu.

Additional information

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state task no. AAAA-A20-120011690138-6).

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 3, pp. 165–171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanduleanu, S.V., Petrov, A.G. Interaction of Two Nearly Contacting Gas Bubbles Pulsating in a Liquid in an Alternating Pressure Field. Jetp Lett. 112, 150–156 (2020). https://doi.org/10.1134/S0021364020150102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020150102

Navigation