Skip to main content
Log in

Focusing of Long-Wavelength X-Rays by Means of Spherical and Planar Microchannel Plates

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The possibility of focusing (concentration) of long-wavelength X-rays by thick spherically bent and planar microchannel plates has been studied experimentally and theoretically. The electrodynamic simulation of emission from a finite antenna array consisting of noninteracting emitters, which are hollow microchannels, has been performed. It has been shown theoretically that the parallel beam of synchrotron radiation can be efficiently focused not only by a spherical microchannel plate but also by a pair of plane-parallel plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X-Ray Spectrometry: Recent Technological Advances, Ed. by K. Tsuji, J. Injuk, and R. van Grieken (Wiley, Chichester, West Sussex, U.K., 2004), p. 616.

    Google Scholar 

  2. Q. Zhang, K. Zhao, J. Li, M. Chini, Y. Cheng, Y. Wu, E. Cunningham, and Z. Chang, Opt. Lett. 39, 3670 (2014). https://doi.org/10.1364/OL.39.003670

    ADS  Google Scholar 

  3. P. Nussey, PhD Thesis (Univ. of Leicester, Leicester, U. K., 2005).

    Google Scholar 

  4. D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, Science (Washington, DC, U. S.) 263, 201 (1994).

    ADS  Google Scholar 

  5. V. A. Arkad’ev, A. I. Kolomiitsev, M. A. Kumakhov, I. A. Ponomarev, I. A. Khodeev, Yu. P. Chertov, and I. M. Shakhparonov, Sov. Phys. Usp. 32, 271 (1989).

    ADS  Google Scholar 

  6. M. A. Kumakhov and F. F. Komarov, Phys. Rep. 191, 289 (1990).

    ADS  Google Scholar 

  7. S. B. Dabagov, M. A. Kumakhov, S. V. Nikitina, V. A. Murashova, R. V. Fedorchuk, and M. N. Yakimenko, J. Synchrotr. Radiat. 2, 132 (1995).

    Google Scholar 

  8. S. B. Dabagov, M. A. Kumakhov, and S. V. Nikitina, Phys. Lett. A 203, 279 (1995).

    ADS  Google Scholar 

  9. P. Engström, A. Rindby, and L. Vincze, Instrum. Rep., Newslett. (ESRF) 26, 30 (1996).

    Google Scholar 

  10. S. B. Dabagov, Phys. Usp. 46, 1053 (2003).

    ADS  Google Scholar 

  11. C. Bergemann, H. Keymeulen, and J. F. van der Veen, Phys. Rev. Lett. 91, 204801 (2003).

    ADS  Google Scholar 

  12. D. H. Bilderback, X-Ray Spectrom. 32, 195 (2003).

    ADS  Google Scholar 

  13. F. Pfeiffer, C. David, M. Burghammer, C. Riekel, and T. Salditt, Science (Washington, DC, U. S.) 297, 230 (2002).

    ADS  Google Scholar 

  14. C. Fuhse and T. Salditt, Phys. B (Amsterdam, Neth.) 357, 57 (2005).

    ADS  Google Scholar 

  15. I. Bukreeva, D. Pelliccia, A. Cedola, F. Scarinci, M. Ilie, C. Giannini, L. de Caro, and S. Lagomarsino, J. Synchrotr. Radiat. 17, 61 (2010).

    Google Scholar 

  16. C. A. MacDonald, X-Ray Opt. Instrum. 10, 1 (2010).

    Google Scholar 

  17. C. Zhurong, J. Fengtao, D. Jianjun, Y. Zhenghua, Z. Xiayu, Y. Zheng, Z. Haiying, J. Shaoen, and D. Yongkun, Opt. Lett. 38, 1509 (2013).

    Google Scholar 

  18. T. Sun and C. A. MacDonald, J. Appl. Phys. 113, 053104 (2013).

    ADS  Google Scholar 

  19. H. Soejima and T. Narusawa, in Advances in X-ray Analysis, Proceedings of the Denver X-ray Conference (JCPDS International Centre for Diffraction Data 2001), vol. 44; http://citeseerx.ist.psu.edu/view-doc/download?doi=10.1.1.305.2099&rep=rep1&type=pdf.

  20. D. Gibson and W. Gibson, in Advances in X-ray Analysis, Proceedings of the Denver X-ray Conference (JCPDS International Centre for Diffraction Data, 2002), Vol. 45. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.1504&rep=rep1&type=pdf.

  21. M. I. Mazuritskiy, S. B. Dabagov, A. Marcelli, K. Dziedzic-Kocurek, D. Hampai, and A. M. Lerer, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 13, 1005 (2019).

    Google Scholar 

  22. M. I. Mazuritskiy and A. M. Lerer, JETP Lett. 105, 572 (2017).

    ADS  Google Scholar 

  23. M. I. Mazuritskiy, S. B. Dabagov, A. Marcelli, A. Lerer, A. Novakovich, and K. Dziedzic-Kocurek, J. Opt. Soc. Am. B 31, 2182 (2014).

    ADS  Google Scholar 

  24. H. N. Chapman, K. A. Nugent, S. W. Wilkins, and T. J. Davies, J. X-Ray Sci. Technol. 2, 117 (1990).

    Google Scholar 

  25. H. N. Chapman, K. A. Nugent, and S. W. Wilkins, Appl. Opt. 32, 6316 (1993).

    ADS  Google Scholar 

  26. P. Kaaret, P. Geissbuhler, A. Cher, and E. Glavinas, Appl. Opt. 31, 7339 (1992).

    ADS  Google Scholar 

  27. A. N. Brunton, A. P. Martin, G. W. Fraser, and W. B. Feller, Nucl. Instrum. Methods Phys. Res., Sect. A 431, 356 (1994).

    ADS  Google Scholar 

  28. M. I. Mazuritskiy, S. B. Dabagov, A. M. Lerer, K. Dziedzic-Kocurek, A. Sokolov, M. Coreno, S. Turchini, A. D’Elia, M. Sacchi, and A. Marceli, Nucl. Instrum. Methods Phys. Res., Sect. B 402, 282 (2017).

    ADS  Google Scholar 

  29. M. I. Mazuritskiy, S. B. Dabagov, A. Marcelli, A. M. Lerer, and K. Dziedzic-Kocurek, J. Synchrotr. Radiat. 23, 274 (2016).

    Google Scholar 

  30. M. I. Mazuritskiy, A. M. Lerer, S. K. Kulov, and D. G. Samkanashvili, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 499 (2019).

    Google Scholar 

  31. Vladikavkaz Technological Center “BASPIK,” Microchannel Plates. http://www.baspik.com/eng/products/nauka/.

  32. A. A. Sokolov, F. Eggenstein, F. A. Erko, R. Follath, S. Kunstner, M. Mast, J. S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, Proc. SPIE 9206, 92060J (2014).

    ADS  Google Scholar 

  33. F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, J. Synchrotr. Radiat. 23, 67 (2016).

    Google Scholar 

  34. NIST Scientific and Technical Databases. http://physics.nist.gov/PhysRefData/FFast/html/form.html.

  35. M. I. Mazuritskiy, A. M. Lerer, and P. V. Makhno, J. Exp. Theor. Phys. 123, 942 (2016).

    ADS  Google Scholar 

  36. M. I. Mazuritskiy, A. M. Lerer, A. Marceli, S. B. Dabagov, M. Coreno, and A. D’Elia, JETP Lett. 107, 600 (2018).

    ADS  Google Scholar 

  37. O. H. W. Siegmund, N. Richner, G. Gunjala, J. B. McPhate, A. S. Tremsin, H. J. Frisch, J. Elam, A. Mane, R. Wagner, C. A. Craven, and M. J. Minot, Proc. SPIE 8859 (2013). https://doi.org/10.1117/12.2024919

Download references

Acknowledgments

We are grateful to beamline scientist A. Sokolov (BESSY II) for assistance in the operation at the Reflectometer station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Mazuritskiy.

Additional information

Funding

The experimental data used in this work were obtained within project nos. 18106366-ST and 191-07912-ST supported by Helmholtz-Zentrum Berlin BESSY II (Berlin). This work was supported by the Southern Federal University.

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 3, pp. 152–159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazuritskiy, M.I., Lerer, A.M. Focusing of Long-Wavelength X-Rays by Means of Spherical and Planar Microchannel Plates. Jetp Lett. 112, 138–144 (2020). https://doi.org/10.1134/S0021364020150072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020150072

Navigation