Skip to main content
Log in

Parameters Optimization for End Milling of Al7075–ZrO2–C Metal Matrix Composites Using GRA and ANOVA

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present study examines the machinability characteristics of end milling process on the Jobber XL CNC machining center to produce minimum surface roughness, minimum cutting force, and maximum material removal rate for Al7075 metal matrix composites. Milling experiments were carried out using Taguchi design of experiment via L27 orthogonal array. Experiments were carried out by varying the milling parameters such as spindle speed, feed rate, and depth of cut along with different weight percentages of zirconium oxide (ZrO2 2.5%) and graphite (C 2.5%, 7.5%, 12.5%). The effects of milling parameters and reinforcement inclusion percentages on cutting forces, surface roughness, and material removal rate were determined and analyzed by using ANOVA. Also, an optimal combination of machining parameters was identified using grey relational analysis. The identified optimal parameters such as spindle speed of 1500 rpm, feed rate of 0.1 rev/mm, and a depth of cut of 0.1 mm were verified using confirmation tests to validate the experimental results. From the results, it is observed that spindle speed and feed rate are the most influencing parameters on the surface roughness and cutting forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kaviyarasan K, Pridhar T, Sureshbabu B, Boopathi C, Srinivasan R, in IOP Conference Series: Materials Science and Engineering , 2018, vol 1. IOP Publishing (2018), p. 012148/

  2. Koli D K, Agnihotri G, Purohit R, Mater Today: Proc 2 (2015) 3032.

    Google Scholar 

  3. Yang N, Boselli J, Sinclair I, J Microsc 201 (2001) 189.

    Article  Google Scholar 

  4. Sambathkumar M, Navaneethakrishnan P, Ponappa K, Sasikumar K, Latin Am J Solids Struct 14 (2017) 243.

    Article  Google Scholar 

  5. Ibrahim M A, Sahin Y, Gidado A Y, Said M, GSJ 7 (2019) 23.

    Google Scholar 

  6. Krishnan P K, Christy J V, Arunachalam R, Mourad A-H I, Muraliraja R, Al-Maharbi M, Murali V, Chandra M M, J Alloys Compd 784 (2019) 1047. https://doi.org/10.1016/j.jallcom.2019.01.115

    Article  CAS  Google Scholar 

  7. Chandra D, Chauhan N R, Rajesha S, inMaterials Today: Proceedings (2020).

  8. Bhowmik A, Chakraborty D, Dey D, Biswas A, Mater Today: Proc (2020). https://doi.org/10.1016/j.matpr.2020.02.617

    Article  Google Scholar 

  9. Jaya Prasad V, Narasimha Rao K, Kishore Babu N, Mater Today: Proc 23 (2020) 637. https://doi.org/10.1016/j.matpr.2019.05.446

    Article  CAS  Google Scholar 

  10. Kadam M S, Shinde V D, Mater Today Proc (2020). https://doi.org/10.1016/j.matpr.2020.01.017

    Article  Google Scholar 

  11. Mishra D, Tulasi T, in Recent Trends in Mechanical Engineering. Springer, New York (2020), p 159.

  12. Gangadhar T, Girish D, Chandra A P, Angadi G, Raj K K, in Intelligent Manufacturing and Energy Sustainability. Springer, New York (2020), p 533.

  13. Hynes N R J, Raja S, Tharmaraj R, Pruncu C I, Dispinar D, J Braz Soc Mech Sci Eng 42 (2010) 155. https://doi.org/10.1007/s40430-020-2237-2

    Article  CAS  Google Scholar 

  14. Nagasai B P, Srikanth S, Babu J R, in Advances in Applied Mechanical Engineering. Springer, New York (2020), p 921

  15. Pawar P, Utpat A A, Procedia Mater Sci 6 (2014) 1150.

    Article  CAS  Google Scholar 

  16. Reddy N S K, Kwang-Sup S, Yang M, J Mater Process Technol 201 (2008) 574.

    Article  CAS  Google Scholar 

  17. Rajeswari B, Amirthagadeswaran K, Measurement 105 (2017) 78.

    Article  Google Scholar 

  18. Ramakrishnan H, Balasundaram R, Selvaganapathy P, Santhakumari M, Sivasankaran P, Vignesh P, SN Appl Sci 1 (2019) 1639.

    Article  CAS  Google Scholar 

  19. Bhushan R K, Kumar S, Das S, Int J Adv Manuf Technol 50 (2010) 459.

    Article  Google Scholar 

  20. Kumar M B, Parameshwaran R, Deepandurai K, Senthil S M, Trans Indian Inst Metals (2020). https://doi.org/10.1007/s12666-020-01960-6

    Article  Google Scholar 

  21. Bhuvanesh Kumar M, Parameshwaran R,. Prod Plan Control 29 (2018) 403.

    Article  Google Scholar 

  22. Gopal P, Prakash K S, Measurement 116 (2018) 178.

    Article  Google Scholar 

  23. Kumar A, Hussain S A I, and Rai R N, in Advances in Industrial and Production Engineering. Springer, New York (2019), p 285.

  24. Pradhan M K, Singh B, Machinability and Multi‐response Optimization of EDM of Al7075/SIC/WS2 Hybrid Composite Using the PROMETHEE Method. Optimization for Engineering Problems. Wiley, New York (2019), p 39.

    Google Scholar 

  25. Kumar M B, Parameshwaran R, Int J Manuf Technol Manag 33 (2019) 398.

    Article  Google Scholar 

  26. Dabade U A, Sonawane H A, Joshi S S, Mach Sci Technol 14 (2010) 258.

    Article  CAS  Google Scholar 

  27. Goel B, Singh S, Sarepaka R V, Mater Manuf Process 30 (2015) 1018.

    Article  CAS  Google Scholar 

  28. 28. Kibria G, Doloi B, Bhattacharyya B, Opt Laser Technol 48 (2013) 16.

    Article  CAS  Google Scholar 

  29. 29. Lin J, Lin C, J Mater Process Technol 160 (2005) 9.

    Article  Google Scholar 

  30. Tang L, Du Y, Mater Manuf Process 29 (2014) 507.

    Article  CAS  Google Scholar 

  31. Lin M, Tsao C, Huang H, Wu C, Hsu C, Int J Comput Integr Manuf 28 (2015) 569.

    Article  Google Scholar 

  32. Manimaran G, Kumar M P, Mater Manuf Process 28 (2013) 418.

    Article  CAS  Google Scholar 

  33. Hsiao Y, Tarng Y, Mater Manuf Process 23 (2007) 51.

    Article  Google Scholar 

  34. Feng Q, Liu L, Zhou X, Int J Adv Manuf Technol 106 (2020) 559.

    Article  Google Scholar 

  35. Pimenov D Y, Abbas A T, Gupta M K ,Erdakov I N, Soliman M S, El Rayes M M, Int J Adv Manuf Technol https://doi.org/10.1007/s00170-020-05236-7

    Article  Google Scholar 

  36. Baradeswaran A, Perumal A E, Compos Part B: Eng 56 (2014) 464.

    Article  CAS  Google Scholar 

  37. Dhanashekar M, Kumar V S, Procedia Eng 97 (2014) 412.

    Article  CAS  Google Scholar 

  38. Liu S, Wang Y, Muthuramalingam T, Anbuchezhiyan G, Compos Part B: Eng 176 (2019) 107329.

    Article  CAS  Google Scholar 

  39. Kuram E, Ozcelik B, Measurement 46 (2013) 1849.

    Article  Google Scholar 

  40. Senthil S, Parameshwaran R, Nathan S R, Kumar M B, Deepandurai K, A Multi-objective Optimization of the Friction Stir Welding Process Using RSM-Based-Desirability Function Approach for Joining Aluminum Alloy 6063-T6 Pipes. Structural and Multidisciplinary Optimization (2020), p 1

  41. 41. Rajmohan T, Palanikumar K, Prakash S, Compos Part B: Eng 50 (2013) 297.

    Article  Google Scholar 

  42. Haitjema H, in The International Academy for Production Engineering CIRP Encyclopedia of Production Engineering, (eds) Laperrière L, and Reinhart G, Springer, Berlin (2017), p 3.

    Google Scholar 

  43. Tzeng C-J, Lin Y-H, Yang Y-K, Jeng, M-C, J Mater Process Technol 209 (2009) 2753.

    Article  CAS  Google Scholar 

  44. Dehghani K, Nekahi A, Mirzaie M A M, Mater Design 31 (2010) 1768.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the staff at the National Institute of Technology Tiruchirappalli and Kongu Engineering College, Erode, for their support in conducting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bhuvanesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest is associated with this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvanesh Kumar, M., Sathiya, P. & Parameshwaran, R. Parameters Optimization for End Milling of Al7075–ZrO2–C Metal Matrix Composites Using GRA and ANOVA. Trans Indian Inst Met 73, 2931–2946 (2020). https://doi.org/10.1007/s12666-020-02089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02089-2

Keywords

Navigation