Skip to main content
Log in

Effect of Epoxy Oligomer on the Hierarchical Structure of Silica Nanoparticles Formed in a Polymer Matrix

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The structural features of epoxy-silica nanocomposites were studied using small-angle X-ray scattering and electron microscopy. It was shown that during the formation of sols of silica nanoparticles in the presence and absence of an epoxy oligomer in the system, their aggregation processes change significantly. Using fractal analysis, the type of fractal aggregates of each structural level is identified and their sizes are determined. It has been established that for systems formed in the presence of an epoxy oligomer, a predominantly two-level fractal organization is observed, at the first level of which mass-fractal aggregates with average sizes of 10-23 nm are formed, and at the second level, depending on the concentration of nanoparticles, they can form both mass and surface fractal aggregates with average sizes of 35-55 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. H. Gu, C. Ma, J. Gu, et al., J. Mater. Chem., 4, 5890-5906 (2016).

    Article  CAS  Google Scholar 

  2. T. F. Irzhak and V. I. Irzhak, Polym. Sci. A, 59, No. 6, 791-825 (2017).

    Article  CAS  Google Scholar 

  3. V. S. Gavrilova, E. A. Pashchenko, S. V. Zhil’tsova, et al., J. Superhard Mater., 39, No. 6, 405-415 (2017).

    Article  Google Scholar 

  4. N. I. C. Berhanuddin, I. Zaman, S. A. M. Rozlan, et al., IOP Conf. Ser., J. Phys., Conf. Ser., 914, 1-7 (2017).

    Google Scholar 

  5. O. A. Shilova, J. Sol-Gel Sci. Technol., (2020), https://doi.org/10.1007/s10971-020-05279-y.

  6. E. A. Lysenkov, N. G. Leonova, and S. V. Zhiltsova, Theor. Exp. Chem., 55, No. 4, 250-257 (2019).

    Article  CAS  Google Scholar 

  7. A. E. Danks, S. R. Hall, and Z. Schnepp, Mater. Horizons, 3, 91-112 (2016).

    Article  CAS  Google Scholar 

  8. A. Kumar, N. Yadav, M. Bhatt, et al., Res. J. Chem. Sci., 5, No. 12, 98-105 (2015).

    Google Scholar 

  9. A. A. C. Silva, T. I. Gomes, B. D. P. Martins, et al., J. Inorg. Organomet. Polym. Mater., (2020), https://doi.org/10.1007/s10904-020-01468-y.

  10. S. Zhyltsova, V. Mykhalchuk, O. Platonova, and V. Biloshenko, Chem. Chem. Technol., 5, No. 1, 49-54 (2011).

    Article  Google Scholar 

  11. C. G. Vonk, J. Appl. Crystallogr., 8, 340-341 (1975).

    Article  Google Scholar 

  12. D. I. Svergun, J. Appl. Crystallogr., 25, 495-503 (1992).

    Article  CAS  Google Scholar 

  13. V. V. Shevchenko, A. V. Stryutskii, V. N. Bliznyuk, et al., Polym. Sci. B, 56, No. 2, 216-228 (2014).

    CAS  Google Scholar 

  14. E. A. Lysenkov, Z. O. Gagolkina, E. V. Lobko, et al., Funct. Mater., 22, No. 3, 342-349 (2015).

    Article  CAS  Google Scholar 

  15. M. C. Garcia-Gutierrez, A. Nogales, J. J. Hernandez, et al., Optica Pura y Aplicada, 40, No. 2, 195-200 (2007).

    Google Scholar 

  16. G. Beaucage, J. Appl. Crystallogr., 28, 717-728 (1995).

    Article  CAS  Google Scholar 

  17. D. W. Schaefer, J. Zhao, J. M. Brown, et al., Chem. Phys. Lett., 375, 369-375 (2003).

    Article  CAS  Google Scholar 

  18. O. M. Londono, P. Tancredi, P. Rivas, et al., Handbook of Materials Characterization, Springer, Berlin (2018), Ch. 2, pp. 37-75.

  19. C. J. Brinker and G. W. Scherer (eds.), Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990).

    Google Scholar 

  20. L. Matejka, K. Dusek, and J. Plestil, Polymer, 40, No. 1, 171-181 (1998).

    Article  Google Scholar 

  21. S. Ponyrko, L. Kobera, J. Brus, and L. Matujka, Polymer, 54, No. 23, 6271-6282 (2013).

    Article  CAS  Google Scholar 

  22. M. M. Adnan, E. G. Tveten, R. Miranti, et al., J. Sol-Gel Sci. Technol. (2020), https://doi.org/10.1007/s10971-020-05220-3.

  23. S. V. Zhil’tsova, V. M. Mikhal’chuk, V. A. Beloshenko, and A. V. Kirilash, Russ. J. Appl. Chem., 82, No. 4, 673-679 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Leonova.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 56. No. 4, pp. 258-264, July-August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhyltsova, S.V., Leonova, N.G. & Lysenkov, E.A. Effect of Epoxy Oligomer on the Hierarchical Structure of Silica Nanoparticles Formed in a Polymer Matrix. Theor Exp Chem 56, 275–282 (2020). https://doi.org/10.1007/s11237-020-09659-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09659-x

Key words

Navigation