Skip to main content
Log in

Enhanced holoentropy-based encoding via whale optimization for highly efficient video coding

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

High-efficiency video coding (HEVC), a video compression method is considered as the most capable descendant of the extensively deployed advanced VC (AVC). Compared with AVC, HEVC provides about twice the data compression ratio at the similar video quality level or considerably enhanced video quality at an equal bit rate. This paper proposes a novel enhanced holoentropy model for proficient systems for distributed VC (DVC). HEVC standard is considered as an archetypal system. The main contribution of this paper is the accomplishment of the encoding process in the HEVC system by enhanced holoentropy, which is linked with the proposed weighting tansig function. It necessitates considerable development when handling video sequences with high resolution. The pixel deviations under altering frames are grouped based on interest, and the outliers are eliminated with the aid of an enhanced entropy standard known as enhanced holoentropy. Here, the weight of tansig function is optimally tuned by whale optimization algorithm. To next of implementation, the suggested encoding scheme is compared with the conventional schemes concerning the number of compressed bits and computational time. By carrying out the encoding process, it reduces the video size with perceptually improved video quality or PSNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABC:

Artificial bee colony

AMVP:

Advanced MV prediction

AVC:

Advanced VC

BE:

Blind extraction

CABAC:

Context-adaptive binary arithmetic coding

CB:

Coding blocks

CM:

Context modeling

CTB:

Chroma tree block

CTU:

Coding tree unit

CU:

Coding unit

CPMV:

Control point motion vectors

DSCNN:

Decoder-side scalable convolutional neural network

DVC:

Distributed VC

FF:

Fire fly

GA:

Genetic algorithm

HEVC:

High efficiency video coding

IPL:

Inter-picture prediction loop

IRAP:

Intra-random access point

JCT-VC:

Joint collaborative team on video coding

JND:

Just noticeable distortion

LC:

Luma coding

LDP:

Low delay power

MB:

Macro block

MVD:

Multi-view video plus depth

MPEG:

Moving picture experts group

MPRGAN:

Multi-level progressive refinement network via an adversarial training approach

MCMC:

Markov Chain Monte Carlo

MC:

Motion compensation

MV:

Motion vector

NN:

Neural network

NTC:

Nonzero transform coefficient

PAMC:

Perspective affine motion compensation

PB:

Prediction blocks

PSNR:

Peak signal-to-noise ratio

PSO:

Particle swarm optimization

QP:

Quantization parameter

RMSE:

Root mean squared error

UQI:

Universal quality image index

VIF:

Visual information fidelity

PU:

Prediction units

RD:

Rate distortion

RA:

Random access

SAO:

Sample adaptive offset

SSIM:

Structural similarity index

SVR:

Support vector regression

TB:

Transform blocks

TU:

Transform units

VBR:

Video bit rate

VCS:

Video constraint set

VVC:

Versatile video coding

VCEG:

Video coding experts group

WOA:

Whale optimization algorithm

3D-HEVC:

Three-dimensional HEVC

References

  1. Lin, J.L., Chen, Y.W., Chang, Y.L., An, J., Lei, S.: Advanced texture and depth coding in 3D-HEVC. J. Vis. Commun. Image Represent. 50, 83–92 (2018)

    Article  Google Scholar 

  2. Pan, Z., Jin, P., Lei, J., Zhang, Y., Sun, X., Kwong, S.: Fast reference frame selection based on content similarity for low complexity HEVC encoder. J. Vis. Commun. Image Represent. 40, 516–524 (2016)

    Article  Google Scholar 

  3. Migallón, H., Hernández-Losada, J.L., Cebrián-Márquez, G., Piñol, P., Malumbres, M.P.: Synchronous and asynchronous HEVC parallel encoder versions based on a GOP approach. Adv. Eng. Softw. 101, 37–49 (2016)

    Article  Google Scholar 

  4. Mercat, A., Bonnot, J., Pelcat, M., Desnos, K., Menard, D.: Smart search space reduction for approximate computing: a low energy HEVC encoder case study. J. Syst. Arch. 80, 56–67 (2017)

    Article  Google Scholar 

  5. Lee, D., Jeong, J.: Fast CU size decision algorithm using machine learning for HEVC intra coding. Signal Process. Image Commun. 62, 33–41 (2018)

    Article  Google Scholar 

  6. Shen, L., Zhang, Z., Zhang, X., An, P., Liu, Z.: Fast TU size decision algorithm for HEVC encoders using Bayesian theorem detection. Signal Process. Image Commun. 32, 121–128 (2015)

    Article  Google Scholar 

  7. Zhang, Q., Wang, X., Huang, X., Rijian, S., Gan, Y.: Fast mode decision algorithm for 3D-HEVC encoding optimization based on depth information. Digit. Signal Process. 44, 37–46 (2015)

    Article  Google Scholar 

  8. Guarda, A.F., Santos, J.M., da Silva Cruz, L.A., Assunção, P.A., Rodrigues, N.M., de Faria, S.M.: A method to improve HEVC lossless coding of volumetric medical images. Signal Process. Image Commun. 59, 96–104 (2017)

    Article  Google Scholar 

  9. Fernández, D.G., Del Barrio, A.A., Botella, G., García, C., Hermida, R.: Complexity reduction in the HEVC/H265 standard based on smooth region. Digit. Signal Process. 73, 24–39 (2018)

    Article  Google Scholar 

  10. Sole, J., Joshi, R., Nguyen, N., Ji, T., Karczewicz, M., Clare, G., Duenas, A.: Transform coefficient coding in HEVC. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1765–1777 (2012)

    Article  Google Scholar 

  11. Kıran, M.S., Fındık, O.: A directed artificial bee colony algorithm. Appl. Soft Comput. 26, 454–462 (2015)

    Article  Google Scholar 

  12. González-de-Suso, J.L., Martínez-Enríquez, E., Díaz-de-María, F.: Adaptive Lagrange multiplier estimation algorithm in HEVC. Signal Process. Image Commun. 56, 40–51 (2017)

    Article  Google Scholar 

  13. Llamocca, D.: Self-reconfigurable architectures for HEVC forward and inverse transform. J. Parallel Distrib. Comput. 109, 178–192 (2017)

    Article  Google Scholar 

  14. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  15. Sullivan, G., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  16. Sullivan, G.J., Boyce, J.M., Chen, Y., Ohm, J.R., Segall, C.A., Vetro, A.: Standardized extensions of high efficiency video coding (HEVC). IEEE J. Select. Top. Signal Process. 7(6), 1001–1016 (2013)

    Article  Google Scholar 

  17. Mostafa Bozorgi, S., Yazdani, S.: IWOA: an improved whale optimization algorithm for optimization problems. J. Comput. Des. Eng. 6(3), 243–259 (2019)

    Google Scholar 

  18. Liu, Z., Lin, T.-L., Chou, C.-C.: Efficient prediction of CU depth and PU mode for fast HEVC encoding using statistical analysis. J. Vis. Commun. Image Represent. 38, 474–486 (2016)

    Article  Google Scholar 

  19. Xu, Z., Min, B., Cheung, R.C.: A fast inter CU decision algorithm for HEVC. Signal Process. Image Commun. 60, 211–223 (2018)

    Article  Google Scholar 

  20. Masera, M., Fiorentin, L.R., Masala, E., Masera, G., Martina, M.: Analysis of HEVC transform throughput requirements for hardware implementations. Signal Process. Image Commun. 57, 173–182 (2017)

    Article  Google Scholar 

  21. Tang, T., Li, L.: Rate control for non-uniform video in HEVC. J. Vis. Commun. Image Represent. 48, 254–267 (2017)

    Article  Google Scholar 

  22. Chung, B., Yim, C.: Fast intra prediction method by adaptive number of candidate modes for RDO in HEVC. Inf. Process. Lett. 131, 20–25 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ding, H., Huang, X., Zhang, Q.: The fast intra CU size decision algorithm using gray value range in HEVC. Opt. Int. J. Light Electron Opt. 127(18), 7155–7161 (2016)

    Article  Google Scholar 

  24. Kuanar, S., Rao, K.R.: Christopher conly, fast mode decision in HEVC intra prediction, using region wise CNN feature classification. In: International Conference on Multimedia and Expo Workshops (ICMEW), San Diego, CA, pp. 1–4. IEEE (2018)

  25. Kuanar, S., Rao, K.R., Bilas, M., Bredow, J.: Adaptive CU mode selection in HEVC intra prediction: a deep learning approach. Circuits Syst. Signal Process. 38(11), 5081–5102 (2019)

    Article  Google Scholar 

  26. Kuanar, S., Conly, C., Rao, K.R.: Deep learning based HEVC in-loop filtering for decoder quality enhancement. In: Picture Coding Symposium (PCS), pp 164-168. IEEE (2018)

  27. Goswami, K., Lee, J.H., Kim, B.G.: Fast algorithm for the high efficiency video coding (HEVC) encoder using texture analysis. Inf. Sci. 364, 72–90 (2016)

    Article  Google Scholar 

  28. Dutta, T., Gupta, H.P.: A robust watermarking framework for high efficiency video coding (HEVC)-encoded video with blind extraction process. J. Vis. Commun. Image Represent. 38, 29–44 (2016)

    Article  Google Scholar 

  29. Zhang, Q., Zhang, Z., Jiang, B., Zhao, X., Gan, Y.: Fast 3D-HEVC encoder algorithm for multiview video plus depth coding. Opt. Int. J. Light Electron Opt. 127(20), 8864–8873 (2016)

    Article  Google Scholar 

  30. Lin, T.-L., Yang, N.-C., Syu, R.-H., Liao, C.-C., Chen, S.-L.: NR-bitstream video quality metrics for SSIM using encoding decisions in AVC and HEVC coded videos. J. Vis. Commun. Image Represent. 32, 257–271 (2015)

    Article  Google Scholar 

  31. Guo, J., Gong, H., Weijian, X., Huang, L.: Hierarchical content importance-based video quality assessment for HEVC encoded videos transmitted over LTE networks. J. Vis. Commun. Image Represent. 43, 50–60 (2017)

    Article  Google Scholar 

  32. Wang, S., Luo, F., Ma, S., Zhang, X., Gao, W.: Low complexity encoder optimization for HEVC. J. Vis. Commun. Image Represent. 35, 120–131 (2016)

    Article  Google Scholar 

  33. Van, X.H., Ascenso, J., Pereira, F.: HEVC backward compatible scalability: a low encoding complexity distributed video coding based approach. Signal Process. Image Commun. 33, 51–70 (2015)

    Article  Google Scholar 

  34. Kumar, B.S., Manjunath, A.S., Christopher, S.: Improved entropy encoding for high efficient video coding standard. Alex. Eng. J. 57(1), 1–9 (2018)

    Article  Google Scholar 

  35. Choi, Y.J., Jun, D.S., Cheong, W.S., Kim, B.G.: Design of efficient perspective affine motion estimation/compensation for versatile video coding (VVC) standard. Electronics 8(9), 993 (2019). https://doi.org/10.3390/electronics8090993

    Article  Google Scholar 

  36. Yang, R., Xu, M., Wang, Z.: Decoder-side HEVC quality enhancement with scalable convolutional neural network. In: IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, pp. 817–822 (2017). https://doi.org/10.1109/icme.2017.8019299

  37. Lee, J.H., Lee, Y.W., Jun, D., Kim, B.G.: Efficient color artifact removal algorithm based on high-efficiency video coding (HEVC) for high-dynamic range video sequences. IEEE Access 8, 64099–64111 (2020). https://doi.org/10.1109/access.2020.2984012

    Article  Google Scholar 

  38. Goswami, K., Kim, B.G.: A design of fast high-efficiency video coding scheme based on markov chain monte carlo model and Bayesian classifier. IEEE Trans. Ind. Electron. 65(11), 8861–8871 (2018). https://doi.org/10.1109/tie.2018.2815941

    Article  Google Scholar 

  39. Jin, Z., An, P., Yang, C., Shen, L.: Quality enhancement for intra frame coding via CNNS: an adversarial approach. In: ICASSP, pp. 1368–1372 (2018)

  40. Lee, Y.W., Kim, J.H., Choi, Y.J., Kim, B.G.: CNN-based approach for visual quality improvement on HEVC. In: IEEE International Conference on Consumer Electronics (ICCE 2018), pp. 498–500 (2018)

  41. Fister, I., Fister, I., Yang, X.-S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evolut. Comput. 13, 34–46 (2013)

    Article  Google Scholar 

  42. McCall, J.: Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 184(1), 205–222 (2005)

    Article  MathSciNet  Google Scholar 

  43. Zhang, J., Xia, P.: An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. J. Sound Vib. 389, 153–167 (2017)

    Article  Google Scholar 

  44. Sarangi, A., Sarangi, S.K., Mukherjee, M., Panigrahi, S.P.: System identification by Crazy-cat swarm optimization. In: 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), pp. 439–442. IEEE (2015)

  45. Hatamlou, A., Abdullah, S., Othman, Z.: Gravitational search algorithm with heuristic search for clustering problems. In: 2011 3rd Conference on Data Mining and Optimization (DMO), Putrajaya, pp. 190–193 (2011)

  46. Mohamad, Z.S., Darvish, A., Rahnamayan, S.: Eye illusion enhancement using interactive differential evolution. In 2011 IEEE Symposium on Differential Evolution (SDE), pp. 1–7. IEEE (2011)

  47. Gu, W., Zhou, B.: Improved grey wolf optimization based on the quantum-behaved mechanism. In: 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, pp. 1537–1540 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh Munagala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munagala, V., Kodati, S. Enhanced holoentropy-based encoding via whale optimization for highly efficient video coding. Vis Comput 37, 2173–2194 (2021). https://doi.org/10.1007/s00371-020-01978-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01978-3

Keywords

Navigation