Skip to main content
Log in

The Young’s Modulus of a Zigzag CNT/Graphene Composite by Tension along the Graphene Direction

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Young’s modulus of a finite-sized zigzag carbon nanotube-based ribbon-like columnar graphene is theoretically studied. The dependence of elastic characteristics on the structural parameters of columnar graphene such as the length and diameter of carbon nanotubes constituting the composite is studied. In this case, within the limits of a particular composite, the structure parameters of carbon nanotubes remain constant. It was established that the Young’s modulus increases with the increase in the carbon nanotube length and decreases with the increase in its diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. Dong, Y. Zhu, J. Zhang, F. Hao, J. Wu, S. Lei, H. Lin, R. H. Hauge, J. M. Tour, and J. Lou, J. Mater. Chem. A 2, 20902 (2014).

    Article  Google Scholar 

  2. S. Vadahanambi, S. H. Lee, W. J. Kim, and I. K. Oh, Environ. Sci. Technol. 47, 10510 (2013).

    Google Scholar 

  3. Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A. R. O. Raji, C. Kittrell, R. H. Hauge, and J. M. Tour, Nat. Commun. 3, 1225 (2012).

    Article  ADS  Google Scholar 

  4. D. Kondo, S. Sato, and Y. Awano, Appl. Phys. Express 1, 074003 (2008).

    Article  ADS  Google Scholar 

  5. V. A. Labunov, Semicond. Phys. Quantum Electron. Optoelectron. 13, 137 (2010).

    Article  Google Scholar 

  6. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, Chem. Mater. 23, 4810 (2011).

    Article  Google Scholar 

  7. V. Jousseaume, J. Cuzzocrea, N. Bernier, and V. T. Renard, Appl. Phys. Lett. 98, 123103 (2011).

    Article  ADS  Google Scholar 

  8. R. Shahsavari and N. Sakhavand, Carbon 95, 699 (2015).

    Article  Google Scholar 

  9. A. S. Kolesnikova and M. M. Mazepa, Proc. SPIE 10508, 105080N (2018).

    Google Scholar 

  10. M. Moradi and J. A. Mohandesi, AIP Adv. 5, 117143 (2015).

    Article  ADS  Google Scholar 

  11. K. Duan, Y. Li, L. Li, Y. Hu, and X. Wang, Mater. Des. 147, 11 (2018).

    Article  Google Scholar 

  12. C. H. Wang, T. H. Fang, and W. L. Sun, J. Phys. D 47, 405 (2014).

    Google Scholar 

  13. T. H. Fang, W. J. Chang, Y. C. Fan, and W. L. Sun, Jpn. J. Appl. Phys. 55, 040301 (2016).

    Article  ADS  Google Scholar 

  14. K. Xia, H. Zhan, Y. Wei, and Y. Gu, Beilstein J. Nanotechnol. 5, 329 (2014).

    Article  Google Scholar 

  15. S. Sihn, V. Varshney, A. K. Roy, and B. L. Farmer, Carbon 50, 603 (2012).

    Article  Google Scholar 

  16. Y. C. Wang, Y. B. Zhu, F. C. Wang, X. Y. Liu, and H. A. Wu, Carbon 118, 588 (2017).

    Article  Google Scholar 

  17. L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Q. Wangac, and J. C. Zheng, J. Mater. Chem. 22, 1435 (2012).

    Article  Google Scholar 

  18. L. Song, Z. Guo, G. B. Chai, Z. Wang, Y. Li, and Y. Luan, Carbon 140, 210 (2018).

    Article  Google Scholar 

  19. A. S. Kolesnikova and M. M. Mazepa, Phys. Solid State 60, 1827 (2018).

    Article  ADS  Google Scholar 

  20. J. Shi, Y. Dong, T. Fisher, and X. Ruan, J. Appl. Phys. 118, 044302 (2015).

    Article  ADS  Google Scholar 

  21. V. Varshney, A. K. Roy, S. S. Patnaik, and G. Froudakis, ACS Nano 4, 1153 (2010).

    Article  Google Scholar 

  22. Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A. R. O. Raji, C. Kittrell, R. H. Hauge, and J. M. Tour, Nat. Commun. 3, 1 (2012).

    Google Scholar 

  23. V. Varshney, S. S. Patnaik, A. K. Roy, G. Froudakis, and B. L. Farmer, ACS Nano 4, 1153 (2010).

    Article  Google Scholar 

  24. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson, and J. M. Tour, Nano Lett. 13, 72 (2013).

    Article  ADS  Google Scholar 

  25. A. V. Eletskii and G. S. Bocharov, Plasma Sources Sci. Technol. 18, 034013 (2009).

    Article  ADS  Google Scholar 

  26. A. S. Kolesnikova, M. M. Mazepa, I. V. Kirillova, and L. Yu. Kossovich, Proc. SPIE 10893, 108930T (2019).

    Google Scholar 

Download references

Funding

This work was supported by the Grant of the President of the Russian Federation within a period of 2019−2021 (project no. SP-310.2019.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kolesnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, A.S., Baranov, I.A. & Mazepa, M.M. The Young’s Modulus of a Zigzag CNT/Graphene Composite by Tension along the Graphene Direction. Phys. Solid State 62, 1889–1891 (2020). https://doi.org/10.1134/S1063783420100169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100169

Keywords:

Navigation