Skip to main content
Log in

Acoustic and Piezoelectric Properties of 0–3 Connectivity Environmental-Friendly Lead-Free BCTS–Portland Cement Composites

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

New environmental-friendly lead-free barium calcium stannate titanate (BCTS)–Portland cement (PC) composites were studied and fabricated to be compatible with the concrete structures for sensors and smart-structure health-monitoring applications. The lead-free composites were produced by pressing and curing techniques. The effect and optimum of BCTS content on properties of composites were studied and compared with models. The acoustic impedances of composites within a range of 30 to 50% BCTS contents are optimal for an acoustic matching with concrete and give good compatibility with concrete structure. Scanning electron microscope images showed calcium silicate hydrate (the main hydration product of cement) at interfacial zone and cement matrix. The piezoelectric results indicate that the BCTS ceramics can improve the electromechanical coupling and piezoelectric properties in these composites. The piezoelectric coefficient measurements followed the cube model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Z. Li, D. Zhang, and K. Wu, J. Am. Ceram. Soc. 85, 305 (2002).

    Article  Google Scholar 

  2. R. Rianyoi, R. Potong, N. Jaitanong, R. Yimnirun, A. Ngamjarurojana, and A. Chaipanich, Curr. Appl. Phys. 11, S48 (2011).

    Article  ADS  Google Scholar 

  3. C. Xin, H. Shifeng, C. Jun, and L. Zongjin, J. Appl. Phys. 101, 094110 (2007).

    Article  ADS  Google Scholar 

  4. L. S. Kamzina and G. Li, Phys. Solid State 62, 584 (2020).

    Google Scholar 

  5. A. V. Kartashev, V. S. Bondarev, I. N. Flerov, M. V. Gorev, E. I. Pogorel’tsev, A. V. Shabanov, M. S. Molokeev, S. Guillemet-Fritsch, and I. P. Raevskii, Phys. Solid State 61, 1052 (2019).

    Article  ADS  Google Scholar 

  6. V. M. Malhotra and N. J. Carino, Handbook on Nondestructive Testing of Concrete, 2nd ed. (CRC Press, New York, 2004).

    Google Scholar 

  7. K. M. Michael, W. M. Sean, and F. H. Vincent, in Proceedings of the 26th Army Science Conference, Florida,2008, p. 1.

  8. K. H. Lam and H. L. W. Chan, Appl. Phys. A 81, 1451 (2005).

    Article  ADS  Google Scholar 

  9. A. Chaipanich, R. Rianyoi, R. Potong, and N. Jaitanong, Ceram. Int. 40, 13579 (2014).

    Article  Google Scholar 

  10. S. Banerjee, J. Torres, and K. A. Cook-Chennault, Ceram. Int. 41, 819 (2015).

    Article  Google Scholar 

  11. S. Aodkeng, R. Rianyoi, A. Ngamjarurojana, and A. Chaipanich, Ferroelectrics 526, 161 (2018).

    Article  Google Scholar 

  12. S. A. Sadykov, N. M.-R. Alikhanov, S. N. Kallaev, M. K. Rabadanov, D. K. Palchaev, Z. K. Murlieva, and R. M. Emirov, Phys. Solid State 61, 2069 (2019).

    Article  ADS  Google Scholar 

  13. M. L. Chen, Z. J. Xu, R. Q. Chu, Y. Liu, L. Shao, W. Li, S. W. Gong, and G. R. Li, Mater. Lett. 97, 86 (2013).

    Article  Google Scholar 

  14. L. F. Zhu, B. P. Zhang, L. Zhao, S. Li, Y. Zhou, X. C. Shi, and N. Wang, J. Eur. Ceram. Soc. 36, 1017 (2016).

    Article  Google Scholar 

  15. L. F. Zhu, B. P. Zhang, L. Zhao, S. Li, Y. Zhou, X. C. Shi, and N. Wang, Ceram. Int. 42, 1086 (2016).

    Article  Google Scholar 

  16. R. Rianyoi, R. Potong, N. Jaitanong, R. Yimnirun, and A. Chaipanich, Appl. Phys. A 104, 661 (2011).

    Article  ADS  Google Scholar 

  17. S. Hunpratub, T. Yamwong, S. Srilomsak, S. Maensiri, and P. Chindaprasirt, Ceram. Int. 40, 1209 (2014).

    Article  Google Scholar 

  18. P. Chomyen, R. Potong, R. Rianyoi, A. Ngamjarurojana, P. Chindaprasirt, and A. Chaipanich, Ceram. Int. 44, 76 (2018).

    Article  Google Scholar 

  19. R. Potong, R. Rianyoi, A. Ngamjarurojana, and A. Chaipanich, Ferroelectr. Lett. 43, 77 (2016).

    Article  Google Scholar 

  20. R. Rianyoi, R. Potong, A. Ngamjarurojana, R. Yimnirun, R. Guo, A. S. Bhalla, and A. Chaipanich, Mater. Res. Bull. 60, 353 (2014).

    Article  Google Scholar 

  21. R. E. Newnham, L. J. Bowen, K. A. Klicker, and L. E. Cross, Mater. Des. 2, 93 (1980).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the division of physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi for support. The Chiang Mai University is also acknowledged.

Funding

This work is supported by the Thailand Research Fund (TRF) (MRG6280021), Office of the Higher Education Commission (Thailand) and Rajamangala University of Technology Thanyaburi. Rajamangala University of Technology Thanyaburi is acknowledged for extending the facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Potong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potong, R., Rianyoi, R. & Chaipanich, A. Acoustic and Piezoelectric Properties of 0–3 Connectivity Environmental-Friendly Lead-Free BCTS–Portland Cement Composites. Phys. Solid State 62, 1892–1897 (2020). https://doi.org/10.1134/S1063783420100273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100273

Keywords:

Navigation