Skip to main content
Log in

A First-Principles Study of TiX2 (X = S, Se, and Te) Compounds Optical Properties under the Effect of Externally Applied Electric Field and Strain

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Optical properties of titanium dichalcogenide compounds, TiX2 (X = S, Se, and Te) have been calculated by first-principles calculations using density functional theory as implemented in SIESTA code. The unit cell of each of these compounds was optimized and the calculations were performed to obtain the optical properties. Further, external electric field (along Z direction) and biaxial strain (along X and Y directions) was employed to study their effect on these properties. The effect of biaxial strain on the geometry of the compounds is also studied. The optical properties are investigated for polarized light along the Z direction (c axis). This include the calculation of real and imaginary parts of dielectric function, absorption coefficient, reflectance, optical conductivity, and refractive index in 0–25 eV energy range. Various modulations of these properties are observed including the blue shifts and red shifts of energies with highest peaks in the visible region and also shifting of energies to other regions of the electromagnetic spectrum. Hence, due to the tunable diverse optical properties, the compounds can be useful in the field of optoelectronics and in making various optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. E. Maniadaki, G. Kopidakis, and I. N. Remediakis, Solid State Commun. 227, 33 (2016).

    Article  ADS  Google Scholar 

  2. J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, Phys. Rev. X 4, 031005 (2014).

    Google Scholar 

  3. R. Gatensby, N. McEvoy, K. Lee, T. Hallam, N. C. Berner, E. Rezvani, S. Winters, M. O’Brien, and G. S. Duesberg, Appl. Surf. Sci. 297, 139 (2014).

    Article  ADS  Google Scholar 

  4. L. M. Xie, Nanoscale 24, 18392 (2015).

    Article  ADS  Google Scholar 

  5. Y. Hu, Y. Huang, C. Tan, X. Zhang, Q. Lu, M. Sindoro, X. Huang, W. Huang, L. Wang, and H. Zhang, Mater. Chem. Front. 1, 24 (2017).

    Article  Google Scholar 

  6. X. Li, J. Shan, W. Zhang, S. Su, L. Yuwen, and L. Wang, Small 13, 1602660 (2017).

    Article  Google Scholar 

  7. M. Parvaz, S. Ahmed, M. B. Khan, R. S. Ahmad, and Z. H. Khan, AIP Conf. Proc. 1953, 030121 (2018).

    Article  Google Scholar 

  8. X. Sun, P. Bonnick, and L. F. Nazar, ACS Energy Lett. 1, 297 (2016).

    Article  Google Scholar 

  9. P. Li, X. Zheng, H. Yu, G. Zhao, J. Shu, X. Xu, W. Sun, and S. X. Doua, Energy Storage Mater. 16, 512 (2019).

    Article  Google Scholar 

  10. F. Levy-Bertrand, B. Michon, J. Marcus, C. Marcenat, J. Kačmarčík, T. Klein, and H. Cercellier, Phys. C (Amsterdam, Neth.) 523, 19 (2016).

  11. P. Chen, W. W. Pai, Y. H. Chan, A. Takayama, C. Z. Xu, A. Karn, S. Hasegawa, M. Y. Chou, S.‑K. Mo, A. V. Fedorov, and T. C. Chiang, Nat. Commun. 8, 516 (2017).

    Article  ADS  Google Scholar 

  12. R. C. Xiao, W. J. Lu, D. F. Shao, J. Y. Li, M. J. Wei, H. Y. Lv, P. Tong, X. B. Zhu, and Y. P. Sun, J. Mater. Chem. C 17, 4167 (2017).

    Article  Google Scholar 

  13. Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao, P. Li, C. Jin, and Y. Li, Nano Energy 20, 168 (2016).

    Article  Google Scholar 

  14. V. V. Ivanovskaya, G. Seifert, and A. L. Ivanovskii, Semiconductors 39, 1058 (2005).

    Article  ADS  Google Scholar 

  15. Z. Vydrova, E. F. Schwier, G. Monney, T. Jaouen, E. Razzoli, C. Monney, B. Hildebrand, C. Didiot, H. Berger, T. Schmitt, V. N. Strocov, F. Vanini, and P. Aebi, Phys. Rev. B 91, 235129 (2015).

    Article  ADS  Google Scholar 

  16. V. N. Strocov, E. E. Krasovskii, W. Schattke, N. Barrett, H. Berger, D. Schrupp, and R. Claessen, Phys. Rev. B 74, 195125 (2006).

    Article  ADS  Google Scholar 

  17. H. El-Kouch, L. E. Farh, J. Sayah, and A. Challioui, Chin. Phys. Lett. 32, 096102 (2015).

    Article  ADS  Google Scholar 

  18. Y. Kim, M. Mizuno, I. Tanaka, and H. Adachi, Jpn. J. Appl. Phys. 37 (Part 1, 9A), 4878 (1998).

  19. T. Lorenz, D. Teich, J. O. Joswig, and G. Seifert, J. Phys. Chem. C 116, 11714 (2012).

    Article  Google Scholar 

  20. M. Inoue, H. P. Hughes, and A. D. Yoffe, Adv. Phys. 38, 565 (1989).

    Article  ADS  Google Scholar 

  21. Y. Tazuke, T. Miyashita, H. Nakano, and R. Sasaki, Phys. Status Solidi 3, 2787 (2006).

    Google Scholar 

  22. A. R. Beal, J. C. Knights, and W. Y. Liang, J. Phys. C: Solid State 5, 3531 (1972).

    Article  ADS  Google Scholar 

  23. H. P. Hughes and W. Y. Liang, J. Phys. C: Solid State Phys. 10, 1079 (1977).

    Article  ADS  Google Scholar 

  24. S. C. Bayliss and W. Y. Liang, J. Phys. C: Solid State. 15, 1283 (1982).

    Article  ADS  Google Scholar 

  25. L. Baldassarre, A. Cingolani, and F. Lévy, Opt. Commun. 71, 72 (1989).

    Article  ADS  Google Scholar 

  26. C. M. Fang, R. A. de Groot, and C. Haas, Phys. Rev. B 56, 4455 (1997).

    Article  ADS  Google Scholar 

  27. H. D. Ozaydin, H. Sahin, J. Kang, F. M. Peeters, and R. T. Senger, arXiV: 1509.03467 (2018).

  28. J. C. E. Rasch, T. Stemmler, B. Muller, L. Dudy, and R. Manzke, Phys. Rev. Lett. 101, 237602 (2008).

    Article  ADS  Google Scholar 

  29. A. Samanta, T. Pandey, and A. K. Singh, Phys. Rev. B 90, 174301 (2014).

    Article  ADS  Google Scholar 

  30. G. A. Benesh, A. M. Woolley, and C. Umrigar, J. Phys. C: Solid State Phys. 18, 1595 (1985).

    Article  ADS  Google Scholar 

  31. Q. Zhang, Y. Cheng, and U. Schwingenschlögl, Phys. Rev. B 88, 155317 (2013).

    Article  ADS  Google Scholar 

  32. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejon, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  33. N. Troullier and J. L. Martins, Phys. Rev. B 43, 8861 (1991).

    Article  ADS  Google Scholar 

  34. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  35. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  36. P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B 53, R10441 (1996).

    Article  ADS  Google Scholar 

  37. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  38. W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, New Numerical Recipes in C (Cambridge Univ. Press, New York, 1986).

    MATH  Google Scholar 

  39. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  ADS  Google Scholar 

  40. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Sharma, C. Ambrosch-Draxl, M. A. Khan, P. Blaha, and S. Auluck, Phys. Rev. B 60, 8610 (1999).

    Article  ADS  Google Scholar 

  42. C. Xu, P. A. Brown, and K. L. Shuford, RSC Adv. 5, 83876 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Dey.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A. A First-Principles Study of TiX2 (X = S, Se, and Te) Compounds Optical Properties under the Effect of Externally Applied Electric Field and Strain. Phys. Solid State 62, 1905–1915 (2020). https://doi.org/10.1134/S1063783420100042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100042

Keywords:

Navigation