Skip to main content
Log in

Differential Thermal EMF of Carbon Zigzag-Type Nanotubes in an External Electric Field

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermoelectric characteristics of carbon nanotubes are studied theoretically. The behavior of the differential thermal EMF of single-layer carbon zigzag-type nanotubes is studied in an external longitudinal dc electric field. The dynamics of the electron subsystem of the nanotubes is described using the Boltzman kinetic equation in terms of the quasi-classical approximation of relaxation times. The analytic relationship has been obtained for the differential thermoelectric coefficient and its nonlinear dependence on the field strength has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. L. Grosse, M. H. Bae, F. Lian, E. Pop, and W. P. King, Nat. Nanotechnol. 6, 287 (2011).

    Article  ADS  Google Scholar 

  2. A. A. Varlamov, A. V. Kavokin, I. A. Luk’yanchuk, and S. G. Sharapov, Phys. Usp. 55, 1146 (2012).

    Article  ADS  Google Scholar 

  3. K. Behnia, M. A. Measson, and Y. Kopelevich, Phys. Rev. Lett. 98, 076603 (2007).

    Article  ADS  Google Scholar 

  4. S. G. Sharapov and A. A. Varlamov, Phys. Rev. B 86, 035430 (2012).

    Article  ADS  Google Scholar 

  5. A. V. Mavrinskii and E. M. Baitinger, Semiconductors 43, 480 (2009).

    Article  ADS  Google Scholar 

  6. P. N. D’yachkov, Electronic Properties and Applications of Nanotubes (BINOM, Laboratoriya Znanii, Moscow, 2010) [in Russian].

    Google Scholar 

  7. N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon, Oxford, 1936).

    Google Scholar 

  8. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

    Google Scholar 

  9. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 48, 385 (1993).

    Google Scholar 

  10. M. B. Belonenko, N. G. Lebedev, and S. A. Sudorgin, Phys. Solid State 53, 1943 (2011).

    Article  ADS  Google Scholar 

  11. E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

  12. A. S. Bulygin, G. M. Shmelev, and I. I. Maglevannyi, Phys. Solid State 41, 1201 (1999).

    Article  ADS  Google Scholar 

  13. I. M. Dykman and P. M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors (Naukova Dumka, Kiev, 1981).

    Google Scholar 

  14. A. A. Tarasenko and A. A. Chumak, Sov. Phys. JETP 45, 328 (1977).

    Google Scholar 

  15. J. Small, L. Shi, and P. Kim, Solid State Commun. 127, 181 (2003).

    Article  ADS  Google Scholar 

  16. J. Small, K. Perez, and P. Kim, Phys. Rev. Lett. 91, 256801 (2003).

    Article  ADS  Google Scholar 

  17. J. Small and P. Kim, Microscale Thermophys. Eng. 8, 1 (2004).

    Article  Google Scholar 

  18. V. E. Egorushkin, N. V. Melnikova, N. G. Bobenko, and A. N. Ponomarev, Nanosyst.: Phys. Chem., Math. 4, 622 (2013).

    Google Scholar 

  19. A. V. Eletskii, Phys. Usp. 52, 209 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and the Government of Volgograd oblast, project no. 19-42-343001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sudorgin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudorgin, S.A., Lebedev, N.G. Differential Thermal EMF of Carbon Zigzag-Type Nanotubes in an External Electric Field. Phys. Solid State 62, 1928–1932 (2020). https://doi.org/10.1134/S1063783420100327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100327

Keywords:

Navigation