Skip to main content

Advertisement

Log in

Systemic Administrations of Water-Dispersible Single-Walled Carbon Nanotubes: Activation of NOS in Spontaneously Hypertensive Rats

  • Published:
Neurophysiology Aims and scope

Priority data have been obtained on the effects of repeated systemic administrations of water-dispersible single-walled carbon nanotubes (SWCNTs) to spontaneously hypertensive rats with respect to constitutive NO-synthase (cNOS). As is known, NO is an inhibitory transmitter in the cardiovascular system. It was found that the systemic (i.p., subcutaneous, and i.m.) introductions of SWCNTs during two weeks resulted in considerable elevations of the NO2 level (a marker of NO bioavailability) in the blood of experimental hypertensive animals. Thus, SWCNTs may be used in the future for antihypertensive therapy as a novel agent capable of activating cNOS and, thus, increasing the NO production in central and peripheral elements of the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Matyshevska, A. Yu. Karlash, Ya. V. Shtogun, et al., “Self-organizing DNA/carbon nanotube molecular films,” Mater. Sci. Eng. C, 15, No. 1–2, 249-252 (2001).

    Article  Google Scholar 

  2. V. R. Raphey, T. K. Henna, K. P. Nivitha, et al., “Advanced biomedical applications of carbon nanotube,” Mater. Sci. Eng. C Mater. Biol. Appl., 100, 616–630 (2019).

    Article  CAS  Google Scholar 

  3. R. Vidu, M. Rahman, M. Mahmoudi, et al., “Nanostructures: a platform for brain repair and augmentation,” Front. Syst. Neurosci., 8, 91 (2014).

  4. W. Zhou, Y. Y. Wang, T. S. Lim, et al., “Detection of single ion channel activity with carbon nanotubes,” Sci. Rep., 5, 9208 (2015).

    Article  CAS  Google Scholar 

  5. H. J. Lee, J. Park, O. J. Yoon, et al., “Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model,” Nat. Nanotechnol., 6, No. 2, 121–125 (2011).

    Article  CAS  Google Scholar 

  6. K. T. Al-Jamal, L. Gherardini, G. Bardi, et al., “Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing,” Proc. Natl. Acad. Sci. USA, 108, No. 27, 10952–10957 (2011).

    Article  CAS  Google Scholar 

  7. V. Martinelli, G. Cellot, A. Fabbro, et al., “Improving cardiac myocytes performance by carbon nanotubes platforms,” Front. Physiol., 4, 239 (2013).

  8. J. M. Gutierrez-Hemandez, M. A. Ramirez-Lee, H. Ro- sas-Hermandez, et al., “Single-walled carbon nanotubes (SWCNTs) induce vasodilation in isolated rat aortic rings,” Toxicol. in Vitro, 29, No. 4, 657–662 (2015).

    Article  Google Scholar 

  9. J. M. Lagramante, S. Sacco, P. Crobeddu, et al, “Changes in cardiac autonomic regulation after acute lung exposure to carbon nanotubes: implications for occupational exposure,” J. Nanomater., 2012, ID 397206 (2012).

  10. N. V. Radchenko, Y. Prylutskyy, L. M. Shapoval, and V. Sagach, “Impact of single-walled carbon nanotubes on the medullary neurons in spontaneously hypertensive rats,” Mat. Wiss. Werkstofftech., 44, Nos. 2–3, 171–175 (2013).

  11. S. Prylutska, R. Bilyy, T. Shkandina, et al., “Сomparative study of membranotropic action of single- and multi-walled carbon nanotubes,” J. Biosci. Bioeng., 115, No. 6, 674–679 (2013).

    Article  CAS  Google Scholar 

  12. N. Oh and J. H. Park, “Endocytosis and exocytosis of nanoparticles in mammalian cells,” Int. J. Nanomed., 9, Suppl 1, 51–63 (2014).

    Google Scholar 

  13. L. Lacerda, J. Russier, G. Pastorin, et al., “Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes,” Biomaterials, 33, No. 11, 3334–3343 (2012).

    Article  CAS  Google Scholar 

  14. L. M. Shapoval, S. V. Prylutska, A. V. Kotsyuruba, et al., “Single-walled carbon nanotubes modulate cardiovascular control in rats,” Mat. Wiss. Werkstofftech., 47, Nos. 2–3, 208–215 (2016).

  15. U. Ritter, P. Scharff, O. P. Dmytrenko, et al. “Radiation damage and Raman vibrational modes of single-walled carbon nanotubes,” Chem. Phys. Lett., 447, Nos. 4–6, 252–256 (2007).

  16. V. F. Korolovych, L. A. Bulavin, Yu. I. Prylutskyy, et al., “Influence of single-walled carbon nanotubes on the thermal expansion of water,” Int. J. Thermophys., 35, 19–31 (2014).

    Article  CAS  Google Scholar 

  17. J. Sun, X. Zhang, M. Broderick, and H. Fein, “Measurement of nitric oxide production in biological systems by using Griess reaction assay,” Sensors, 3, No. 8, 276–284 (2003).

    Article  CAS  Google Scholar 

  18. S. Y. Chin, K. N. Pandey, S. J. Shi, et al., “Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats,” Am. J. Physiol., 277, 797–804 (1999).

    Google Scholar 

  19. V. M. Harik, “Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects,” Toxicol. Lett., 273, 69–85 (2017).

    Article  CAS  Google Scholar 

  20. H. Kafa, J. T.-W. Wang, N. Rubio, et al. “The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo,” Biomaterials, 53, 437–452 (2015).

    Article  CAS  Google Scholar 

  21. L. N. Shapoval, O. V. Dmytrenko, L. S. Pobegailo, et al., “Hemodynamic responses induced by modulation of the nitric oxide system and mitochondrial permeability in the medullary cardiovascular nuclei of rats,” Neurophysiology, 39, 232–244 (2007).

    Google Scholar 

  22. N. Toda, K. Ayajiki, and T. Okamura, “Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase,” J. Hypertens., 27, 1929–1940 (2009).

    Article  CAS  Google Scholar 

  23. S. V. Prylutska, I. I. Grynyuk, S. M. Grebinyk, et al., “Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells,” Mat. Wiss. Werkstofftech., 40, No. 4, 238–241 (2009).

  24. O. H. Minchenko, D. O. Tsymbal, D. O. Minchenko, et al., “Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes,” Toxicol. In Vitro, 52, 122–130 (2018).

    Article  CAS  Google Scholar 

  25. S. V. Prylutska, I. I. Grynyuk, O. P. Matyshevska, et al., “Estimation of multi-walled carbon nanotubes toxicity in vitro,” Physica E Low-Dimens. Syst. Nanostruct., 40, No. 7, 2565–2569 (2008).

    Article  CAS  Google Scholar 

  26. R. Singla, C. Sharma, A. K. Shukla, and A. Acharya, “Toxicity concerns of therapeutic nanomaterials,” J. Nanosci. Nanotechnol., 19, No. 4, 1889–1907 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Prylutskyy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapoval, L.M., Dmytrenko, O.V., Sagach, V.F. et al. Systemic Administrations of Water-Dispersible Single-Walled Carbon Nanotubes: Activation of NOS in Spontaneously Hypertensive Rats. Neurophysiology 52, 101–109 (2020). https://doi.org/10.1007/s11062-020-09858-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09858-1

Keywords

Navigation