Skip to main content
Log in

Modeling of Single-Walled Carbon Nanotube Binding to Nitric Oxide Synthase and Guanylate Cyclase Molecular Structures

  • Published:
Neurophysiology Aims and scope

Previously, we have demonstrated that water dispersible single-walled carbon nanotubes (SWCNTs) may be used in low therapeutic doses in antihypertensive therapy as promising agents capable of activating constitutive nitric oxide synthase (NOS) in spontaneously hypertensive rats, thus increasing the NO production in central and peripheral elements of the cardiovascular system [1]. Here we confirm this effect by docking and molecular dynamics simulations, clearly showing that SWCNTs may interact with NOS and guanylate cyclase molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Shapoval, O. V. Dmytrenko, V. F. Sagach, et al., “Administration of water-dispersible single-walled carbon nanotubes: activation of NOS in spontaneously hypertensive rats,” Neurophysiology, 52, No. 2, 101–109 (2020).

    Google Scholar 

  2. F. Cataldo and T. Da Ros, Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Springer, Berlin (2008).

    Book  Google Scholar 

  3. S. V. Prylutska, I. I. Grynyuk, O. P. Matyshevska, et al., “Estimation of multi-walled carbon nanotubes toxicity in vitro,” Physica E: Low-Dimens. Syst. Nanostruct., 40, No. 7, 2565–2569 (2008).

    Article  CAS  Google Scholar 

  4. A. S. Buchelnikov, D. P. Voronin, V. V. Kostjukov, et al., “Complexation of aromatic drugs with single-walled carbon nanotubes,” J. Nanopart. Res., 16, 2472 (2014).

    Article  Google Scholar 

  5. V. M. Harik, “Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects,” Toxicol. Lett., 273, 69–85 (2017).

    Article  CAS  Google Scholar 

  6. O. H. Minchenko, D. O. Tsymbal, D. O. Minchenko, et al., “Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes,” Toxicol. in Vitro, 52, 122–130 (2018).

    Article  CAS  Google Scholar 

  7. L. B. Sukhodub, L. F. Sukhodub, Yu. I. Prylutskyy, et al., “Composite material based on hydroxyapatite and multiwalled carbon nanotubes filled by iron: preparation, properties and drug release ability,” Mater. Sci. Eng. C, 93, 606–614 (2018).

    Article  CAS  Google Scholar 

  8. V. R. Raphey, T. K. Henna, K. P. Nivitha, et al., “Advanced biomedical applications of carbon nanotube,” Mater. Sci. Eng. C Mater. Biol. Appl., 100, 616–630 (2019).

    Article  CAS  Google Scholar 

  9. U. Ritter, P. Scharff, O. P. Dmytrenko, et al., “Radiation damage and Raman vibrational modes of single-walled carbon nanotubes,” Chem. Phys. Lett., 447, 252–256 (2007).

    Article  CAS  Google Scholar 

  10. S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, John Wiley and Sons, New York (2008).

    Google Scholar 

  11. L. Yu. Мatzui, I. V. Ovsienko, T. A. Len, et al., “Transport properties of carbon nanotube-based composites,” Fullerenes Nanotube., Carbon Nanostruct., 13, Suppl. 1, 259–265 (2005).

  12. G. E. Grechnev, V. A. Desnenko, A. V. Fedorchenko, et al. “Structure and magnetic properties of multi-walled carbon nanotubes modified with iron,” Low Temp. Phys., 36, 1086–1090 (2010).

    Article  CAS  Google Scholar 

  13. H. J. Choi, J. S. Woo, J. T. Han, and S.-Y. Park, “Fabrication of water-dispersible single-walled carbon nanotube powder using N-methylmorpholine N-oxide,” Nanotechnology, 28, No. 46, 465706 (2017).

    Article  Google Scholar 

  14. O. P. Matyshevska, A. Yu. Karlash, Ya. V. Shtogun, et al., “Self-organizing DNA/carbon nanotube molecular films,” Mater. Sci. Eng. C, 15, Nos. 1–2, 249–252 (2001).

    Article  Google Scholar 

  15. S. Prylutska, R. Bilyy, T. Shkandina, et al., “Сomparative study of membranotropic action of single- and multiwalled carbon nanotubes,” J. Biosci. Bioeng., 115, No. 6, 674–679 (2013).

    Article  CAS  Google Scholar 

  16. N. V. Radchenko, Y. I. Prylutskyy, L. M. Shapoval, et al., “Impact of single-walled carbon nanotubes on the medullary neurons in spontaneously hypertensive rats,” Mat. Wiss. Werkstofftech., 44, 171–175 (2013).

    Article  CAS  Google Scholar 

  17. L. M. Shapoval, S. V. Prylutska, A. V. Kotsyuruba, et al., “Single-walled carbon nanotubes modulate cardiovascular control in rats,” Mat. Wiss. Werkstofftech., 47, 208–215 (2016).

    Article  CAS  Google Scholar 

  18. V. F. Korolovych, L. A. Bulavin, Yu. I. Prylutskyy, et al., “Influence of single-walled carbon nanotubes on the thermal expansion of water,” Int. J. Thermophys., 35, 19–31 (2014).

    Article  CAS  Google Scholar 

  19. G. L. Warren, C. W. Andrews, A.-M. Capelli, et al., “A critical assessment of docking programs and scoring functions,” J. Med. Chem., 49, No. 20, 5912–5931 (2006).

    Article  CAS  Google Scholar 

  20. C. McMartin and R. S. Bohacek, “QXP: powerful, rapid computer algorithms for structure-based drug design,” J. Comput. Aided Mol. Des., 11, No. 4, 333–344 (1997).

    Article  CAS  Google Scholar 

  21. J. B. Sturgeon and B. B. Laird, “Symplectic algorithm for constant-pressure molecular dynamics using a Nosé–Poincaré thermostat,” J. Chem. Phys., 112, 3474–3482 (2000).

    Article  CAS  Google Scholar 

  22. S. D. Bond, B. J. Leimkuhler, and B. B. Laird, “The Nosé-Poincaré method for constant temperature molecular dynamics,” J. Comput. Phys., 151, No. 1, 114–134 (1999).

    Article  CAS  Google Scholar 

  23. M. J. Robertson, J. Tirado-Rives, and W. L. Jorgensen, “Improved peptide and protein torsional energetics with the OPLS-AA force field,” J. Chem. Theor. Comput., 11, No. 7, 3499–3509 (2015).

    Article  CAS  Google Scholar 

  24. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys., 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  25. T. Lengauer and M. Rarey, “Computational methods for biomolecular docking”, Curr. Opin. Struct. Biol., 6, No. 3, 402–406 (1996).

    Article  CAS  Google Scholar 

  26. S. Prylutska, I. Grynyuk, A. Grebinyk, et al., “Cytotoxic effects of dimorpholino-N-trichloroacetylphosphorylamide and dimorpholino-N-benzoylphosphorylamide in combination with C60 fullerene on leukemic cells and docking study of their interaction with DNA,” Nanoscale Res. Lett., 12, No. 1, 124 (2017).

    Article  CAS  Google Scholar 

  27. L. M. Skivka, S. V. Prylutska, M. P. Rudyk, et al., “C60 fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes,” Cancer Nanotechnol., 9, No. 1, 8 (2018).

    Article  Google Scholar 

  28. M. I. Melnyk, I. V. Ivanova, D. O. Dryn, et al., “C60 fullerenes selectively inhibit BKCa but not Kv channels in pulmonary artery smooth muscle cells,” Nanomed.: NBM, 19, 1–11 (2019).

  29. H. Kuznietsova, N. Dziubenko, V. Hurmach, et al., “Water-soluble pristine C60 fullerenes inhibit liver fibrotic alteration and prevent liver cirrhosis in rats”, Oxidat. Med. Cell. Longev., 2020, Article ID 8061246 (2020).

  30. L. N. Shapoval, O. V. Dmytrenko, L. S. Pobegailo, et al., “Hemodynamic responses induced by modulation of the nitric oxide system and mitochondrial permeability in the medullary cardiovascular nuclei of rats,” Neurophysiology, 39, 232–244 (2007).

  31. N. Toda, K. Ayajiki, and T. Okamura, “Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase,” J. Hypertens., 27, No. 10, 1929–1940 (2009).

    Article  CAS  Google Scholar 

  32. M. Tolkachov, V. Sokolova, V. Korolovych, et al., ”Study of biocompatibility effect of nanocarbon particles on various cell types in vitro,Mat. Wiss. Werkstofftech., 47, 216–221 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Prylutskyy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurmach, V.V., Khrapatiy, S.V., Zavodovskyi, D.O. et al. Modeling of Single-Walled Carbon Nanotube Binding to Nitric Oxide Synthase and Guanylate Cyclase Molecular Structures. Neurophysiology 52, 110–115 (2020). https://doi.org/10.1007/s11062-020-09859-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09859-0

Keywords

Navigation