Skip to main content

Advertisement

Log in

Integration of PET/CT Radiomics and Semantic Features for Differentiation between Active Pulmonary Tuberculosis and Lung Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We aim to accurately differentiate between active pulmonary tuberculosis (TB) and lung cancer (LC) based on radiomics and semantic features as extracted from pre-treatment positron emission tomography/X-ray computed tomography (PET/CT) images.

Procedures

A total of 174 patients (77/97 pulmonary TB/LC as confirmed by pathology) were retrospectively selected, with 122 in the training cohort and 52 in the validation cohort. Four hundred eighty-seven radiomics features were initially extracted to quantify phenotypic characteristics of the lesion region in both PET and CT images. Eleven semantic features were additionally defined by two experienced nuclear medicine physicians. Feature selection was performed in 5 steps to enable derivation of robust and effective signatures. Multivariable logistic regression analysis was subsequently used to develop a radiomics nomogram. The calibration, discrimination, and clinical usefulness of the nomogram were evaluated in both the training and independent validation cohorts.

Results

The individualized radiomics nomogram, which combined PET/CT radiomics signature with semantic features, demonstrated good calibration and significantly improved the diagnostic performance with respect to the semantic model alone or PET/CT signature alone in training cohort (AUC 0.97 vs. 0.94 or 0.91, p = 0.0392 or 0.0056), whereas did not significantly improve the performance in validation cohort (AUC 0.93 vs. 0.89 or 0.91, p = 0.3098 or 0.3323).

Conclusion

The radiomics nomogram showed potential for individualized differential diagnosis between solid active pulmonary TB and solid LC, although the improvement of performance was not significant relative to semantic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. World Health Organization (2018) Global Tuberculosis Report 2018. Geneva, World Health Organization. www.who.int/tb/publications/global_report/en/. Accessed 18 Sep 2018

  2. Mandell Gerald L, Bennett John E, and Dolin Raphael (2009) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 7th. PA: Churchill Livingstone Elsevier

  3. Ankrah AO, Glaudemans AWJM, Maes A, van de Wiele C, Dierckx RAJO, Vorster M, Sathekge MM (2018) Tuberculosis. Semin Nucl Med 48:108–130

    Article  Google Scholar 

  4. Bhatt M, Kant S, Bhaskar R (2012) Pulmonary tuberculosis as differential diagnosis of lung cancer. South Asian J Cancer 1:36–42

    Article  Google Scholar 

  5. Parker CS, Siracuse CG, Litle VR (2018) Identifying lung cancer in patients with active pulmonary tuberculosis. J Thorac Dis 10:S3392–S3397

    Article  Google Scholar 

  6. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    Article  Google Scholar 

  7. Ruilong Z, Daohai X, Li G, Xiaohong W, Chunjie W, Lei T (2017) Diagnostic value of 18F-FDG-PET/CT for the evaluation of solitary pulmonary nodules: a systematic review and meta-analysis. Nucl Med Commun 38:67–75

    Article  Google Scholar 

  8. Lee AY, Choi SJ, Jung KP, Park JS, Lee SM, Bae SK (2014) Characteristics of metastatic mediastinal lymph nodes of non-small cell lung cancer on preoperative F-18 FDG PET/CT. Nucl Med Mol Imaging 48:41–46

    Article  CAS  Google Scholar 

  9. Hu SL, Yang ZY, Zhou ZR, Yu X, Ping B, Zhang YJ (2013) Role of SUVmax obtained by 18F-FDG PET /CT in patients with a solitary pancreatic lesion: predicting malignant potential and proliferation. Nucl Med Commun 34:533–539

    Article  Google Scholar 

  10. Boyaci H, Basyigit I, Baris SA (2013) Positron emission tomography/computed tomography in cases with tuberculosis mimicking lung cancer. Braz J Infect Dis 17:267–269

    Article  Google Scholar 

  11. Akgul AG, Liman ST, Topcu S, Yuksel M (2014) False positive PET scan deserves attention. JBUON 19:836–841

    PubMed  Google Scholar 

  12. Zhang M, Zhuo N, Guo Z, Zhang X, Liang W, Zhao S, He J (2015) Establishment of a mathematic model for predicting malignancy in solitary pulmonary nodules. J Thorac Dis 7:1833–1841

    PubMed  PubMed Central  Google Scholar 

  13. Li Q, Balagurunathan Y, Liu Y et al (2018) Comparison between radiological semantic features and lung-RADS in predicting malignancy of screen-detected lung nodules in the National Lung Screening Trial. Clin Lung Cancer 19:148–156.e3

    Article  Google Scholar 

  14. Lin H, Huang C, Wang W, Luo J, Yang X, Liu Y (2017) Measuring interobserver disagreement in rating diagnostic characteristics of pulmonary nodule using the lung imaging database consortium and image database resource initiative. Acad Radiol 24:401–410

    Article  Google Scholar 

  15. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  Google Scholar 

  16. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 44:151–165

    Article  Google Scholar 

  17. Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H, Li Q, Cherezov D, Gatenby RA, Balagurunathan Y, Goldgof D, Schabath MB, Hall L, Gillies RJ (2016) Predicting malignant nodules from screening CT scans. J Thorac Oncol 11:2120–2128

    Article  Google Scholar 

  18. Balagurunathan Y, Schabath MB, Wang H, Liu Y, Gillies RJ (2019) Quantitative imaging features improve discrimination of malignancy in pulmonary nodules. Sci Rep 9:8528

    Article  Google Scholar 

  19. Lv W, Yuan Q, Wang Q, Ma J, Jiang J, Yang W, Feng Q, Chen W, Rahmim A, Lu L (2018) Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT. Eur Radiol 28:3245–3254

    Article  Google Scholar 

  20. Du D, Feng H, Lv W et al (2020) Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images. Mol Imaging Biol 22:730–738

  21. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear Medicine (EANM) (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354

    Article  CAS  Google Scholar 

  22. Ashrafinia S, Dalaie P, Yan R, Huang P, Pomper M, Schindler T (2018) Application of texture and radiomics analysis to clinical myocardial perfusion SPECT imaging [abstract]. J Nucl Med 59:94

    Google Scholar 

  23. Ashrafinia S (2019) Quantitative nuclear medicine imaging using advanced image reconstruction and radiomics. Johns Hopkins University, Ph.D. dissertation

  24. Zwanenburg A, Leger S, Vallières M, Löck S (2019) Image biomarker standardisation initiative. ArXiv Preprint ArXiv: 1612.07003v7

  25. Zwanenburg A, Vallières M, Abdalah MA (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338 http://orca.cf.ac.uk/id/eprint/128432. Accessed 10 Mar 2020

  26. Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, Chen W (2016) Robustness of Radiomic features in [11C]choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945

    Article  CAS  Google Scholar 

  27. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  Google Scholar 

  28. Foley D (1972) Considerations of sample and feature size. IEEE Trans Inf Theory 18:618–626

    Article  Google Scholar 

  29. Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 10:e0124165

    Article  Google Scholar 

  30. Fonti V and Belitser E (2017) Feature selection using LASSO. VU Amsterdam research paper in business analytics 1–25

  31. Lv W, Yuan Q, Wang Q et al (2019) Radiomics analysis of PET and CT components of PET/CT imaging integrated with clinical parameters: application to prognosis for nasopharyngeal carcinoma. Mol Imaging Biol 21:954–964

  32. Choromańska A, Macura KJ (2012) Evaluation of solitary pulmonary nodule detected during computed tomography examination. Pol J Radiol 77:22–34

    Article  Google Scholar 

  33. Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP, Wiener RS (2013) Evaluation of individuals with pulmonary nodules: when is it lung cancer? Chest 143:e93S–e120S

    Article  Google Scholar 

  34. Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55:37–42

    Article  CAS  Google Scholar 

  35. Hatt M, Majdoub M, Vallieres M, Tixier F, le Rest CC, Groheux D, Hindie E, Martineau A, Pradier O, Hustinx R, Perdrisot R, Guillevin R, el Naqa I, Visvikis D (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56:38–44

    Article  CAS  Google Scholar 

  36. Apostolova I, Steffen IG, Wedel F, Lougovski A, Marnitz S, Derlin T, Amthauer H, Buchert R, Hofheinz F, Brenner W (2014) Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. Eur Radiol 24:2077–2087

    Article  Google Scholar 

  37. Hofheinz F, Lougovski A, Zöphel K, Hentschel M, Steffen IG, Apostolova I, Wedel F, Buchert R, Baumann M, Brenner W, Kotzerke J, van den Hoff J (2015) Increased evidence for the prognostic value of primary tumor asphericity in pretherapeutic FDG PET for risk stratification in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 42:429–437

    Article  Google Scholar 

  38. Apostolova I, Rogasch J, Buchert R, Wertzel H, Achenbach HJ, Schreiber J, Riedel S, Furth C, Lougovski A, Schramm G, Hofheinz F, Amthauer H, Steffen IG (2014) Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC. BMC Cancer 14:896

    Article  Google Scholar 

  39. Apostolova I, Ego K, Steffen IG, Buchert R, Wertzel H, Achenbach HJ, Riedel S, Schreiber J, Schultz M, Furth C, Derlin T, Amthauer H, Hofheinz F, Kalinski T (2016) The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers. Eur J Nucl Med Mol Imaging 43:2360–2373

    Article  CAS  Google Scholar 

  40. Sun Y, Li C, Jin L, Gao P, Zhao W, Ma W, Tan M, Wu W, Duan S, Shan Y, Li M (2020) Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Eur Radiol 30:3650–3659

    Article  Google Scholar 

  41. Yip SSF, Liu Y, Parmar C, Li Q, Liu S, Qu F, Ye Z, Gillies RJ, Aerts HJWL (2017) Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer. Sci Rep 7:3519

    Article  Google Scholar 

  42. Lv P, Zhou X, Luo B et al (2010) The findings of fluorodeoxyglucose F18 imaging of coincidence single photon emission computed tomography in the lung tuberculoma. Chin J Tuberc Respir Dis 33:597–600

    Google Scholar 

  43. Snoeckx A, Reyntiens P, Desbuquoit D, Spinhoven MJ, van Schil PE, van Meerbeeck JP, Parizel PM (2018) Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging 9:73–86

    Article  Google Scholar 

  44. Vallières M, Zwanenburg A, Badic B, Cheze Le Rest C, Visvikis D, Hatt M (2018) Responsible radiomics research for faster clinical translation. J Nucl Med 59:189–193

    Article  Google Scholar 

  45. Welch ML, McIntosh C, Haibe-Kains B, Milosevic MF, Wee L, Dekker A, Huang SH, Purdie TG, O'Sullivan B, Aerts HJWL, Jaffray DA (2019) Vulnerabilities of radiomic signature development: the need for safeguards. Radiother Oncol 130:2–9

    Article  Google Scholar 

  46. Wang X, Zhao X, Li Q, Xia W, Peng Z, Zhang R, Li Q, Jian J, Wang W, Tang Y, Liu S, Gao X (2019) Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Eur Radiol 29:6049–6058

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China under grant 81871437, the Natural Science Foundation of Guangdong Province under grants 2019A1515011104, and the Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme (Lijun Lu 2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubing Wu or Lijun Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Gu, J., Chen, X. et al. Integration of PET/CT Radiomics and Semantic Features for Differentiation between Active Pulmonary Tuberculosis and Lung Cancer. Mol Imaging Biol 23, 287–298 (2021). https://doi.org/10.1007/s11307-020-01550-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01550-4

Key words

Navigation