Skip to main content
Log in

Fluorescence-Based Detection of Cholesterol Using Inclusion Complex of Hydroxypropyl-β-Cyclodextrin and l-Tryptophan as the Fluorescence Probe

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The study is inspired by the fact that intravenous administration of 2-hydroxypropyl-beta-cyclodextrins (HP-β-CD) in rats leads to a rapid decrease in plasma cholesterol levels. Further, HP-β-CD being more water soluble than native β-CD, HP-β-CD forms soluble complex with cholesterol and higher affinity of cholesterol towards HP-β-CD than native β-CD leads to increase sensitivity. Hence, present work reports potential use of HP-β-CD as a chemosensor to detect cholesterol aided with l-tryptophan (l-Trp) as a fluorescence probe. The purpose of the study is to develop fast, cost-effective, and high throughput fluorescence-based chemosensor as convenient point-of-care diagnostic method for cholesterol detection.

Methods

The host-guest interaction of l-Trp with HP-β-CD was elaborately studied using characterization techniques such as FT-IR, NMR, and DSC. Time and concentration dependent interactions were studied to determine the stoichiometry of molecular inclusion complexes of HP-β-CD with l-Trp. Further, the inclusion complex of HP-β-CD with l-tryptophan is explored to detect cholesterol based on the competitive displacement phenomenon and further explored for detecting different concentrations of cholesterol.

Results

Fluorescence spectroscopic data revealed that HP-β-CD served as a quencher for l-Trp. Also, promising results of the displacement assay proved that the fluorescence of l-Trp was quenched by HP-β-CD followed by increase in fluorescence signals in quantitative relation with cholesterol as it replaces l-Trp from the HP-β-CD host.

Conclusion

The present investigation is a proof-of-concept that proves the potential of HP-β-CD with l-Trp as a novel fluorescence–based technique for cholesterol detection which is developed using competitive host–guest interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98(5):1875–918.

    Article  CAS  PubMed  Google Scholar 

  2. Del Valle EM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–46.

    Article  CAS  Google Scholar 

  3. Di Cagno MP. The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules. 2017;22(1):1.

    Article  CAS  Google Scholar 

  4. He J, Zheng Z-P, Zhu Q, Guo F, Chen J. Encapsulation mechanism of oxyresveratrol by β-cyclodextrin and hydroxypropyl-β-cyclodextrin and computational analysis. Molecules. 2017;22(11):1801.

    Article  PubMed Central  CAS  Google Scholar 

  5. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35.

    Article  CAS  PubMed  Google Scholar 

  6. Buschmann H-J, Schollmeyer E. Applications of cyclodextrins in cosmetic products: a review. Int J Cosmet Sci. 2002;53(3):185–92.

    CAS  Google Scholar 

  7. Chiu S-H, Chung T-W, Giridhar R, Wu W-T. Immobilization of β-cyclodextrin in chitosan beads for separation of cholesterol from egg yolk. Food Res. 2004;37(3):217–23.

    Article  CAS  Google Scholar 

  8. Xiao L, Ling Y, Alsbaiee A, Li C, Helbling DE, Dichtel WR. β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations. J Am Chem Soc. 2017;139(23):7689–92.

    Article  CAS  PubMed  Google Scholar 

  9. Challa R, Ahuja A, Ali J, Khar R. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–E57.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stella VJ, Rajewski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res. 1997;14(5):556–67.

    Article  CAS  PubMed  Google Scholar 

  11. Szejtli J. Cyclodextrins in food, cosmetics and toiletries. Starch-Stärke. 1982;34(11):379–85.

    Article  CAS  Google Scholar 

  12. Ogoshi T, Harada A. Chemical sensors based on cyclodextrin derivatives. Sensors. 2008;8(8):4961–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Redenti E, Pietra C, Gerloczy A, Szente L. Cyclodextrins in oligonucleotide delivery. Adv Drug Deliv Rev. 2001;53(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  14. Pflueger I, Charrat C, Mellet CO, Fernández JMG, Di Giorgio C, Benito JM. Cyclodextrin-based facial amphiphiles: assessing the impact of the hydrophilic–lipophilic balance in the self-assembly, DNA complexation and gene delivery capabilities. Org Biomol Chem. 2016;14(42):10037–49.

    Article  CAS  PubMed  Google Scholar 

  15. Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci. 2010;2(2):72–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X-Y, Fang H-X, Yu L-P. Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta. 2013;116:283–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng Y, Jiang P, Lin S, Li Y, Dong X. An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sensors Actuators B Chem. 2014;193:838–43.

    Article  CAS  Google Scholar 

  18. Mondal A, Jana NR. Fluorescent detection of cholesterol using β-cyclodextrin functionalized graphene. ChemComm. 2012;48(58):7316–8.

    CAS  Google Scholar 

  19. Li L-H, Dutkiewicz EP, Huang Y-C, Zhou H-B, Hsu C-C. Analytical methods for cholesterol quantification. J Food Drug Anal. 2019;27(2):375–86.

    Article  CAS  PubMed  Google Scholar 

  20. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 2015;29(2):205–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Devadoss A, Burgess JD. Detection of cholesterol through electron transfer to cholesterol oxidase in electrode-supported lipid bilayer membranes. Langmuir. 2002;18(25):9617–21.

    Article  CAS  Google Scholar 

  22. Li H, El-Dakdouki MH, Zhu DC, Abela GS, Huang X. Synthesis of β-cyclodextrin conjugated superparamagnetic iron oxide nanoparticles for selective binding and detection of cholesterol crystals. ChemComm. 2012;48(28):3385–7.

    CAS  Google Scholar 

  23. Sun Q, Fang S, Fang Y, Qian Z, Feng H. Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta. 2017;167:513–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang N, Liu Y, Tong L, Xu K, Zhuo L, Tang B. A novel assembly of Au NPs–β-CDs–FL for the fluorescent probing of cholesterol and its application in blood serum. Analyst. 2008;133(9):1176–81.

    Article  CAS  PubMed  Google Scholar 

  25. Yu Y, Chipot C, Cai W, Shao X. Molecular dynamics study of the inclusion of cholesterol into cyclodextrins. J Phys Chem B. 2006;110(12):6372–8.

    Article  CAS  PubMed  Google Scholar 

  26. Frijlink HW, Eissens AC, Hefting NR, Poelstra K, Lerk CF, Meijer DK. The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharm Res. 1991;8(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  27. Hayashino Y, Sugita M, Arima H, Irie T, Kikuchi T, Hirata F. Predicting the binding mode of 2-hydroxypropyl-β-cyclodextrin to cholesterol by means of the MD simulation and the 3D-RISM-KH theory. J Phys Chem B. 2018;122(21):5716–25.

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda H, Nakamura M, Ise N, Oguma N, Nakamura A, Ikeda T, et al. Fluorescent cyclodextrins for molecule sensing: fluorescent properties, NMR characterization, and inclusion phenomena of N-dansylleucine-modified cyclodextrins. J Am Chem Soc. 1996;118(45):10980–8.

    Article  CAS  Google Scholar 

  29. Chakrabarti RS, Ingham SA, Kozlitina J, Gay A, Cohen JC, Radhakrishnan A, et al. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. Elife. 2017;6:e23355.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Li B, Wada T, Inoue Y. Fluorometric studies on inclusion complexation of L/D-tryptophan by β-cyclodextrin 6-O-pyridinecarboxylates. Bioorg Chem. 2001;29(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  32. Lakowicz JR. Principles of fluorescence spectroscopy. Springer science & business media; 2013.

  33. Horský J, Pitha J. Inclusion complexes of proteins: interaction of cyclodextrins with peptides containing aromatic amino acids studied by competitive spectrophotometry. J Incl Phenom Mol Recognit Chem. 1994;18(3):291–300.

    Article  Google Scholar 

  34. Liang W, Rong Y, Fan L, Dong W, Dong Q, Yang C, et al. 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J Mater Chem C. 2018;6(47):12822–9.

    Article  CAS  Google Scholar 

  35. Leclercq L. Interactions between cyclodextrins and cellular components: towards greener medical applications? Beilstein J Org Chem. 2016;12(1):2644–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sainio E-L, Pulkki K, Young S. L-tryptophan: biochemical, nutritional and pharmacological aspects. Amino Acids. 1996;10(1):21–47.

    Article  CAS  PubMed  Google Scholar 

  37. Neacsu AD, Neacsu A, Contineanu I, Munteanu G, Tanasescu S. Solid state study of the inclusion compounds of alpha-, beta-cyclodextrin with D-,L-tryptophan isomers. Rev Roum Chim. 2013;58:863–70.

    CAS  Google Scholar 

  38. dos Santos C, Buera MP, Mazzobre MF. Phase solubility studies and stability of cholesterol/β-cyclodextrin inclusion complexes. J Sci Food Agric. 2011;91(14):2551–7.

    Article  PubMed  CAS  Google Scholar 

  39. Shanmugam M, Ramesh D, Nagalakshmi V, Kavitha R, Rajamohan R, Stalin T. Host–guest interaction of l-tyrosine with β-cyclodextrin. Spectrochim Acta A. 2008;71(1):125–32.

    Article  CAS  Google Scholar 

  40. Roy MN, Ekka D, Saha S, Roy MC. Host–guest inclusion complexes of α and β-cyclodextrins with α-amino acids. RSC Adv. 2014;4(80):42383–90.

    Article  CAS  Google Scholar 

  41. Nishijo J, Tsuchitani M. Interaction of L-tryptophan with α-cyclodextrin: studies with calorimetry and proton nuclear magnetic resonance spectroscopy. J Pharm Sci. 2001;90(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  42. Lipkowitz KB, Raghothama S, Yang JA. Enantioselective binding of tryptophan by. alpha.-cyclodextrin. J Am Chem Soc. 1992;114(5):1554–62.

    Article  CAS  Google Scholar 

  43. Brum Malta LF, Senra JD, Medeiros ME, Antunes O. Supramolecular complex of 2-hydroxypropyl-β-cyclodextrin with d-and l-tryptophan. Supramol Chem. 2006;18(4):327–31.

    Article  CAS  Google Scholar 

  44. Srinivasan K, Stalin T. Study of inclusion complex between 2, 6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods. Spectrochim Acta A. 2014;130:105–15.

    Article  CAS  Google Scholar 

  45. Yu B, Wang J, Zhang H, Jin Z. Investigation of the interactions between the hydrophobic cavities of cyclodextrins and pullulanase. Molecules. 2011;16(4):3010–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97(5):1325–58.

    Article  CAS  PubMed  Google Scholar 

  47. Breslow R, Zhang B. Cholesterol recognition and binding by cyclodextrin dimers. J Am Chem Soc. 1996;118(35):8495–6.

    Article  CAS  Google Scholar 

  48. Program LMCotLRC. Cholesterol and triglyceride concentrations in serum/plasma pairs. Clin Chem. 1977;23:60–3.

    Article  Google Scholar 

Download references

Funding

Authors are thankful to Ramanujan fellowship research grant (SR/S2/RJN-139/2011), Ramalingaswami fellowship research grant (BT/RLF/Re-entry/51/2011), University Grant Commission-Basic Science Research (UGC-BSR), Department of Biotechnology for funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Akshay Holkar, Sharwari Ghodke, and Prachi Bangde. The first draft of the manuscript was written by Akshay Holkar, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Prajakta Dandekar or Ratnesh Jain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holkar, A., Ghodke, S., Bangde, P. et al. Fluorescence-Based Detection of Cholesterol Using Inclusion Complex of Hydroxypropyl-β-Cyclodextrin and l-Tryptophan as the Fluorescence Probe. J Pharm Innov 17, 170–179 (2022). https://doi.org/10.1007/s12247-020-09503-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09503-8

Keywords

Navigation