Skip to main content

Advertisement

Log in

Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Mining operations can cause environmental alterations that have a major impact on aquatic organisms. In the present study, we analyzed the effects of mining operations on the environmental heterogeneity of streams in the eastern Brazilian Amazon, and the beta diversity (and components) of the local communities of the order Ephemeroptera. We tested three hypotheses: (a) mining activities reduce the environmental variation of streams; (b) altered streams have lower beta diversity, and (c) environmental variables influence the genus richness and abundance of ephemeropterans. The ephemeropterans were sampled in the Carajás National Forest in the dry season over 3 years. Streams were sampled in areas near the extraction of iron ore (16) and in pristine environments (8). The beta diversity was estimated based on the occurrence and abundance approaches. We recorded 2259 individuals and 32 genera. The comparative assessment of environmental variables indicated that environments altered by mining have higher total manganese and iron concentrations than preserved environments. Environmental variables influenced ephemeropteran communities, and the analysis of the components of the beta diversity indicated a higher turnover of ephemeropterans in preserved streams, which implies that species substitution rates are higher in preserved streams than in altered streams. These results indicate that the substitution of species in preserved streams is limited spatially, probably linked to the sensitivity of the organisms to oscillations in the environmental variables occurring in impacted environments.

Implications for insect conservation:

The results indicated that possibly the changes brought about by mining activities restrict the turnover of species between the preserved and altered areas, and only species tolerant to these changes were established. Over time and with the advancement of mining activities may occur the local exclusion of the most sensitive species and homogenization of the composition formed by more tolerant and less relevant conservation species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Koppen’s climate classification map for Brazil. Met Zeits 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington

    Google Scholar 

  • Anderson MJ, Ellingsen KE, Mcardle BH (2006) Multivariate as a measure of beta diversity. Ecol Lett 9:683–693

    Google Scholar 

  • Anderson MJ, Crist TO, Chase JM et al (2010) Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Google Scholar 

  • Armitage PD, Bowes MJ, Vincent HM (2007) Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: the river Nent (Cumbria, UK) after 28 years. Riv Res App 23(9):997–1015. https://doi.org/10.1002/rra.1022

    Article  Google Scholar 

  • Baker NJ, Greenfield R (2019) Shift happens: changes to the diversity of riverine aquatic macroinvertebrate communities in response to sewage effluent runoff. Ecol Ind 102:813–821. https://doi.org/10.1016/j.ecolind.2019.03.021

    Article  Google Scholar 

  • Baptista DF, Buss DF, Nessimian JL, Da Silva ER, De Moraes Neto AHA, Carvalho SN, De Oliveira MA, Andrade LR (2006) Diversity and habitat preference of aquatic insect along the longitudinal gradient of the Macaé River BASIN, Rio de Janeiro. Brasil Rev Brasil de Biol 61(2):249–258

    Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of betadiversity. Global Ecol Biogeogr 19(1):134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991

    Google Scholar 

  • Bezerra L (2017) Parte I. Escopo e contexto. Plano de Pesquisa Geossistemas Ferruginosos da Floresta Nacional de Carajás: Temas Prioritários para Pesquisa e Diretrizes para Ampliação do Conhecimento sobre os Geossistemas Ferruginosos da Floresta Nacional de Carajás e seu Entorno. ICMBIO, Brasília, pp 11–12

  • Bispo PC, Oliveira LG, Crisci-Bispo VLC, Sousa KG (2004) Environmental factors influencing distribution and abundance of trichopterans in Central Brazilian mountain streams. Stud Neotrop Fauna Environ 39:233–237. https://doi.org/10.1080/01650520412331271710

    Article  Google Scholar 

  • Bispo PC, Oliveira LG, Bini LM, Sousa KG (2006) Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Braz J of Biol 66:611–622. https://doi.org/10.1590/S1519-69842006000400005

    Article  CAS  Google Scholar 

  • Bradt P, Urban M, Goodman N, Bissell S, Spiegel I (1999) Stability and resilience in benthic macroinvertebrate assemblages. Hydrobiologia 403:123–133

    Google Scholar 

  • Brasil LS, Shimano Y, Batista JD, Cabette HSR (2013) Effects of environmental factors on community structure of Leptophlebiidae (Insecta, Ephemeroptera) in Cerrado streams, Brazil. Iheringia Sér Zool 103(3):260–265

    Google Scholar 

  • Brasil LS, Juen L, Cabette HSR (2014) The effects of environmental integrity on the diversity of mayflies, Leptophlebiidae (Ephemeroptera), in tropical streams of the Brazilian Cerrado. Annales de Limnologie Int J Limnol 50:325–334

    Google Scholar 

  • Brasil LS, Lima EL, Spigolonic ZA, Ribeiro-Brasil DR, Juen L (2020a) The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol Ind 116:1–7

    Google Scholar 

  • Brasil LS, Luiza-Andrade A, Calvão LB, Dias-Silva K, Faria APJ, Shimano Y, Oliveira-Júnior JMB, Cardoso MN, Juen L (2020b) Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environmental. Environ Monit Assess. https://doi.org/10.1007/s10661-020-8147-z

    Article  Google Scholar 

  • Brittain JE (1982) Biology of mayflies. Ann Rev of Entomol 27:119–147. https://doi.org/10.1146/annurev.en.27.010182.001003

    Article  Google Scholar 

  • Buss DF, Baptista DF, Silveira MP, Nessimian JL, Dorvillé LFM (2002) Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in southeast Brazil. Hydrobiologia 481:125–136

    CAS  Google Scholar 

  • Buss DF, Baptista DF, Nessimian JL, Egler M (2004) Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1):179–188

    Google Scholar 

  • Cadmus P, Brinkman SF, May MK (2018) Chronic toxicity of ferric iron for North American aquatic organisms: derivation of a chronic water quality criterion using single species and mesocosm data. Arch Environ Cont Toxicol 74(4):605–615. https://doi.org/10.1007/s00244-018-0505-2

    Article  CAS  Google Scholar 

  • Callisto M, Esteves FA (1998) Caracterização funcional dos macroinvertebrados bentônicos em quatro ecossistemas lóticos sob influência das atividades de uma mineração de bauxita na Amazônia central (Brasil). Oecol Bras 5(1):15

    Google Scholar 

  • Callisto M, Fonseca J, Goncalves J (1998) Benthic macroinvertebrates of four Amazonian streams influenced by bauxite mine (Brazil). Proc Int Assoc Theor Appl Limnol 26:983–985

    Google Scholar 

  • Callisto M, Moretti M, Goulart MDC (2001) Macroinvertebrados bentônicos como ferramenta para avaliar a saúde de igarapés. Rev Brasil de Rec Híd 6:71–82

    Google Scholar 

  • Cardinale B (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86

    CAS  Google Scholar 

  • Cardoso MN, Shimano Y, Nabout JC, Juen L (2015) An estimate of the potential number of mayfly species (Ephemeroptera, Insecta) still to be described in Brazil. Rev Bras Entomol 59:147–153. https://doi.org/10.1016/j.rbe.2015.03.014

    Article  Google Scholar 

  • Castro DMP, Dolédec S, Callisto M (2018) Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecol Ind 84:573–582

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6 (or v7): user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cleef A, Silva MFF (1994) Plant comunities of the Serra dos Carajás (Pará) Brazil. Bol Mus Paraense “Emilio Goeldi” S Bot 10:269–281

    Google Scholar 

  • Clements W, Kotalik C (2016) Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. Fresh Sci 35:126–138. https://doi.org/10.1086/685085

    Article  Google Scholar 

  • Costas N, Pardoa I, Méndez-Fernández L, Martínez-Madridc M, Rodríguez P (2018) Sensitivity of macroinvertebrate indicator taxa to metal gradients in mining areas in Northern Spain. Ecol Ind 93:207–218. https://doi.org/10.1016/j.ecolind.2018.04.059

    Article  Google Scholar 

  • Cormier SM, Glenn W, Suter GW II, Zheng L, Pond GJ (2013) Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environ Toxicol Chem 32(2):277–287. https://doi.org/10.1002/etc.2059

    Article  CAS  Google Scholar 

  • Couceiro SRM, Hamada N, Luz SLB, Forsberg BR, Pimentel TP (2006) Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575:271–284

    Google Scholar 

  • Cunha EJ, Juen L (2017) Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J Insect Conserv 21(1):111–119. https://doi.org/10.1007/s10841-017-9959-1

    Article  Google Scholar 

  • Dedieu N, Vigouroux R, Cerdan P, Céréghino R (2014) Invertebrate communities delineate hydro-ecoregions and respond to anthropogenic disturbance in East-Amazonian streams. Hydrobiologia 742(1):95–105. https://doi.org/10.1007/s10750-014-1969-3

    Article  CAS  Google Scholar 

  • Dedieu N, Rhone M, Vigouroux R, Céréghino R (2015) Assessing the impact of gold mining in headwater streams of Eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecol Ind 52:332–340. https://doi.org/10.1016/j.ecolind.2014.12.012

    Article  Google Scholar 

  • Dittman E, Buchwalter D (2010) Manganese bioconcentration in aquatic insects: mn oxide coatings, molting loss, and mn (II) thiol scavenging. Environ Sci Technol 44(23):9182–9188. https://doi.org/10.1021/es1022043

    Article  CAS  Google Scholar 

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán, p 656

    Google Scholar 

  • Domínguez E, Molineri C, Pescador ML, Hubbard MD, Nieto C (2006) Ephemeroptera of South America. In: Adis J, Arias JR, Rueda-Delgado G, Wantzen KM (eds) Aquatic biodiversity of Latin America, vol 2. Pensoft, Moscow-Sofia, pp 1–646

    Google Scholar 

  • Downes BJ, Lake PS, Schreiber ESG, Glaister A (2000) Habitat structure, resources and diversity: the separate effects of Surface roughness and macroalgae on stream invertebrates. Oecologia 123:569–581

    CAS  Google Scholar 

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner H (2020) Adespatial Package. R package Version 0.3–8. https://CRAN.R-project.org/package=adespatial. Accessed May 2020

  • Ehikhamele IE, Ogbogu SS (2016) Assessment of the concentrations of some heavy metals and their effects on the macroinvertebrate composition in Igun southwestern Nigeria, using reference site approach. J Entomol Zool Stud 5(1):452–458

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x

    Article  Google Scholar 

  • Feio MJ, Ferreira WR, Macedo DR, Eller AP, Alves CBM, França JS, Callisto M (2015) Defining and testing targets for the recovery of tropical streams based on macroinvertebrate communities and abiotic conditions. River Res Appli 31(1):70–84

    Google Scholar 

  • Firmiano KR, Ligeiro R, Macedo DR, Juen L, Hughes RM, Callisto M (2017) Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecol Ind 74:276–284. https://doi.org/10.1016/j.ecolind.2016.11.033

    Article  CAS  Google Scholar 

  • Godoy BS, Queiroz LL, Lodi S, Oliveira LG (2016) Environment and spatial influences on aquatic insect communities in cerrado streams: the relative importance of conductivity, altitude, and conservation areas. Neotrop Entomol 46(2):151–158. https://doi.org/10.1007/s13744-016-0452-4

    Article  Google Scholar 

  • Goulart M, Callisto M (2003) Bioindicadores de qualidade de água como ferramenta em estudos de impacto ambiental. Rev da FAPAM 2(1):1–9

    Google Scholar 

  • Grainger CJ, Groves DI, Tallarico FHB, Fletcher IR (2008) Metallogenesis of the carajás mineral Province, Southern Amazon Craton, Brazil: varying styles of archean through paleoproterozoic to neoproterozoic base- and precious-metal mineralization. Ore Geol Rev 33(3–4):451–489. https://doi.org/10.1016/j.oregeorev.2006.10.010

    Article  Google Scholar 

  • Heino J, Grönroos M, Ilmonen J, Karhu T, Niva ME, Paasivirta L (2013) Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshw Sci 32:142–154. https://doi.org/10.1899/12-083.1

    Article  Google Scholar 

  • Helson J, Williams D (2013) Development of a macroinvertebrate multimetric index for the assessment of low-land streams in the neotropics. Ecol Ind 29:167–178. https://doi.org/10.1016/j.ecolind.2012.12.030

    Article  Google Scholar 

  • Hill MJ, Heino J, White JC, Ryves DB, Wood PJ (2019) Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biol Conserv 237:348–357

    Google Scholar 

  • ICMBio (2016) Plano de Manejo da Floresta Nacional de Carajás. Volumen I—Diagnóstico. Ministério do Meio Ambiente. Instituto Chico Mendes da Conservação da Biodiversidade, Brasília

    Google Scholar 

  • Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis—IBAMA (2003) Plano de Manejo. Plano de Manejo para Uso Múltiplo da Floresta Nacional de Carajás. IBAMA—Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis; CVRD—Companhia Vale do Rio Doce; STCP—Engenharia de Projetos LTDA, [aprovado pela Portaria IBAMA no 45/2004]

  • Johnson B, Weaver P, Nietch C, Lazorchak J, Struewing K, Funk D (2015) Elevated major ion concentrations inhibit larval mayfly growth and development: elevated ion concentrations inhibit mayfly growth. Environ Toxicol Chem 34(1):167–172. https://doi.org/10.1002/etc.2777

    Article  CAS  Google Scholar 

  • Juen L, De Marco P (2011) Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv Divers 4:265–274. https://doi.org/10.1111/j.1752-4598.2010.00130.x

    Article  Google Scholar 

  • Krynak EM, Yates AG (2018) Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: Implications for indicator identification. Ecol Ind 93:1050–1059. https://doi.org/10.1016/j.ecolind.2018.06.002

    Article  Google Scholar 

  • Krynak EM, Lindo Z, Yates AG (2019) Patterns and drivers of stream benthic macroinvertebrate beta diversity in an agricultural landscape. Hydrobiologia 837:61–75

    Google Scholar 

  • Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334

    Google Scholar 

  • Ligeiro R, Ferreira W, Castro D, Firmiano KR, Silva D, Callisto M (2014) Macroinvertebrados bentônicos em igarapés de cabeceira: múltiplas abordagens de estudos ecológicos em bacias hidrográficas. In: Callisto M, Alves CBM, Lopes JM, Castro MA (eds) Condições ecológicas em bacias hidrográficas de empreendimentos hidrelétricos, vol 1. Belo Horizonte, Companhia Energética de Minas Gerais (Serie Peixe Vivo), pp 127–160

    Google Scholar 

  • Linton TK, Pacheco MAW, McIntyre DO, Clement WH, Goodrich-Mahoney J (2007) Development of bioassessment-based benchmarks for iron. Environ Toxicol Chem 26(6):1291. https://doi.org/10.1897/06-431.1

    Article  CAS  Google Scholar 

  • Luiza-Andrade A, De Assis Montag LF, Juen L (2017) Functional diversity in studies of aquatic macroinvertebrates community. Scientometrics 111(3):1643–1656

    Google Scholar 

  • Magurran AE (2004) Measuring Biological Diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Martins RT, De Oliveira VC, Salcedo AKM (2014) Uso de insetos aquáticos na avaliação de impactos antrópicos em ecossistemas aquáticos. In: Hamada N, Nessimian JL, Querino RB (eds) Insetos Aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus, p 724

    Google Scholar 

  • Mesquita AL (1983) Notas sobre a vegetação de canga da Serra Norte. Bol Mus Paraense “Emilio Goeldi” S Bot 59:1–13

    Google Scholar 

  • Miguel TB, Oliveira-Júnior JMB, Ligeiro R, Juen L (2017) Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Ind 81:555–566

    CAS  Google Scholar 

  • Monteiro MA (2005) Meio século de mineração industrial na Amazônia e suas implicações para o desenvolvimento regional. Estud Av 19(53):187

    Google Scholar 

  • Monteiro-Júnior CS, Couceiro SRM, Hamada N, Juen L (2013) Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia. Brazil Int J of Odonat 16(2):135–144. https://doi.org/10.1080/13887890.2013.764798

    Article  Google Scholar 

  • Mota NFO, Silva LVC, Martins FD, Viana PL (2015) Vegetação sobre sistemas ferruginosos da Serra dos Carajás. In: Carmo FF, Kamino LHY (eds) Geossistemas ferruginosos do Brasil áreas prioritárias para conservação da diversidade geológica e biológica patrimônio cultural e serviços ambientais. 3i Editora, Belo Horizonte, pp 289–315

  • Mota NFO, Watanabe MTC, Zappi DC, Hiura AL, Pallos J, Viveros RS, Guiletti AM, Viana PL (2018) Cangas da Amazônia: a vegetação única de Carajásevidenciada pela lista de fanerógamas. Rodriguésia 69(3):1435–1488. https://doi.org/10.1590/2175-7860201869336

    Article  Google Scholar 

  • Nunes J, Schaefer C, Ferreira Júnior W, Neri A, Correa G, Enright N (2015) Soil-vegetation relationships on a banded ironstone ‘island’, Carajás Plateau, Brazilian Eastern Amazonia. An Acad Bras Ciênc 87(4):2097–2110. https://doi.org/10.1590/0001-376520152014-0106

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Wagner H (2019) Vegan: community ecology package. R package Version 2.5–6. https://cran.r-project.org, https://github.com/vegandevs/vegan. Accessed May 2020

  • Oliveira-Junior JMB, Shimano Y, Gardner TA, Hughes RM, De Marco PJR, Juen L (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Aust Ecol 40:733–744

    Google Scholar 

  • Pan BZ, Wang HZ, Pusch MT, Wang HJ (2015) Macroinvertebrate responses to regime shifts caused by eutrophication in subtropical shallow lakes. Fresh Sci 34(3):942–952. https://doi.org/10.1086/682077

    Article  Google Scholar 

  • Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms intemperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22. https://doi.org/10.1111/j.1461-0248.2004.00682.x

    Article  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed May 2020

  • Richards DR, Moggridge HL, Maltby L, Warren PH (2018) Impacts of habitat heterogeneity on the provision of multiple ecosystem services in a temperate floodplain. Basic Appl Ecol 29:32–43. https://doi.org/10.1016/j.baae.2018.02.012

    Article  Google Scholar 

  • Richmond BG, Wright B, Grosse I, Dechow PC, Ross CF, Spencer MA et al (2005) Finite element analysis in functional morphology. Anat Rec Part A Discov Mol Cell Evol Biol 283:259–274. https://doi.org/10.1002/ar.a.20169

    Article  Google Scholar 

  • Rizzini CT (1979) Tratado de Fitogeografia do Brasil, vol 2. HUCITEC/ Universidade de São Paulo, São Paulo, p 374

    Google Scholar 

  • Rocha MP, Bini LM, Domisch S, Tolonen KT, Jyrkänkallio-Mikkola J, Soininen J, Hjort J, Heino J (2018) Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. J Biogeogr 00:1–11. https://doi.org/10.1111/jbi.13457

    Article  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, London, p 48

    Google Scholar 

  • Rosset V, Angélibert S, Arthaud F, Bornette G, Robin J, Wezel A, Vallod D, Oertli B (2014) Is eutrophication really a major impairment for small waterbody biodiversity? J Appl Ecol 51(2):415–425. https://doi.org/10.1111/1365-2664.12201

    Article  Google Scholar 

  • Salles F, Boldrini R (2019) Ephemeroptera in Catálogo Taxonômico da Fauna do Brasil. PNUD. https://fauna.jbrj.gov.br/fauna/faunadobrasil/122. Accessedo 5 Dec 2019

  • Salles F, Ribeiro Da-Silva E, Hubbard MD, Serrão JE (2004) As espécies de Ephemeroptera (Insecta) registradas para o Brasil. Biota Neotrop 4(2). https://www.biotaneotropica.org.br/v4n2/pt/abstract?inventory+BN04004022004 (atualizada: setembro, 2016). Accessed October 2019, May 2020

  • Schettini AT, Leite MGP, Messias MCTB, Gauthier A, Li H, Kozovits AR (2018) Exploring Al, Mn and Fe phytoextraction in 27 ferruginous rocky outcrops plant species. Flora 238:175–182

    Google Scholar 

  • Seiferling I, Proulx R, Witrh C (2014) Disentangling the environmental heterogeneity–species-diversity relationship along a gradient of human footprint. Ecology 95(8):2084–2095

    Google Scholar 

  • Shimano Y (2015) Ephemeroptera (Insecta) do Brasil: estado da arte, amostragem, influencias e distribuição. PHD Dissertation, Universidade Federal do Pará

  • Shimano Y, Juen L (2016) How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Ann de Limnol 52:35–45

    Google Scholar 

  • Shimano Y, Salles FF, Cabette HSR (2011) Ephemeroptera (Insecta) from east of Mato Grosso State, Brazil. Biota Neotrop 11(4). https://www.biotaneotropica.org.br/v11n4/en/abstract?inventory+bn02011042011. Accessed March 2020

  • Shimano Y, Juen L, Salles FF, Nogueira DS, Cabette HSR (2013) Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams. Ann de Limnol Int J Limnol 49:31–41

    Google Scholar 

  • Shimano Y, Cardoso M, Juen L (2018) Ecological studies of mayflies (Insecta, Ephemeroptera): can sampling effort be reduced without losing essential taxonomic and ecological information? Acta Amaz 48:137–145. https://doi.org/10.1590/1809-4392201700583

    Article  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100(1–3):179–196. https://doi.org/10.1016/S0269-7491(99)00091-3

    Article  CAS  Google Scholar 

  • Soininen J, Lennon JJ, Hillebrand H (2007) A multivariate analysis of betadiversity across organisms and environments. Ecology 88(11):2830–2838. https://doi.org/10.1890/06-1730.1

    Article  Google Scholar 

  • Souto DMGR, Facure GK, Pavanin LA, Jacobucci BG (2011) Influence of environmental factors on benthic macroinvertebrate communities of urban streams in Vereda habitats. Central Brazil Acta Limnol Brasil 23(3):293–306. https://doi.org/10.1590/S2179-975X2012005000008

    Article  Google Scholar 

  • Souza-Filho PWM, Giannini TC, Jaffe R, Giulietti AM, Santos DC, Nascimento WRJR (2019) Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: a challenge for biodiversity conservation. PLoS ONE 14(1):e0211095. https://doi.org/10.1371/journal.pone.0211095

    Article  CAS  Google Scholar 

  • Tolbert GE, Tremaine JW, Melcher GC, Gomes CB (1971) The recently discovered Serra dos Carajás iron deposits, Northern Brazil. Econ Geol 66(7):985–994. https://doi.org/10.2113/gsecongeo.66.7.985

    Article  CAS  Google Scholar 

  • Viana MN, Gil A, Salino A, Zappi D, Harley R, Ilkiu-Borges A, Secco R, Almeida T, Watanabe M, Santos J, Trovó M, Maurity C, Giulietti A (2016) Flora das cangas da Serra dos Carajás, Pará, Brasil: história, área de estudos e metodologia. Rodriguésia 67(5):1107–1124. https://doi.org/10.1590/21757860201667501

    Article  Google Scholar 

  • Vörösmarty C, McIntyre P, Gessner M (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. https://doi.org/10.1038/nature09440

    Article  CAS  Google Scholar 

  • Ward DN, Holmes JP (1995) The new rivers & wildlife handbook. RSPP, NRA e The Wilslife Trusts, Bedfordshire, p 426

    Google Scholar 

  • Woodward G, Jones JI, Hildrew AG (2002) Community persistence in Broadstone Stream (UK) over three decades. Fresh Biol 47:1419–1435

    Google Scholar 

  • Wright IA, Ryan MM (2016) Impact of mining and industrial pollution on stream macroinvertebrates: importance of taxonomic resolution, water geochemistry and EPT indices for impact detection. Hydrobiologia 772:103–115. https://doi.org/10.1007/s10750-016-2644-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author thanks the Coordination for the Improvement of Higher Education Personnel (CAPES) for granting a scholarship during her master's degree, and the Federal University of Pará (UFPA), through the Dean for International Relations (PROINTER), Dean for Research and Graduate Studies (PROPESP), the Organization of American States (OEA), the Graduate Program in Ecology (PPGECO), and the Laboratory of Primary Producers (ECOPRO) for infrastructure, support, and financial resources. L. Juen thanks the Brazilian National Research Council (CNPq) for a productivity scholarship (process 304710/2019-9), and the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA) and Chico Mendes Institute for Biodiversity Conservation (ICMBio), which are responsible for the environmental licensing process for mining projects in Brazil, environmental monitoring programs, and the authorization of specimen collection in the present study.

Author information

Authors and Affiliations

Authors

Contributions

LJ conceived the study and designed the methods; YS collected the data; ACE, YS, and BD analyzed the data; ACE, YS, and BD led the writing of the manuscript; LJ, ACE, YS, SR, LM, and BD contributed critically to the different drafts and gave their final approval for submission.

Corresponding author

Correspondence to Bárbara Dunck.

Ethics declarations

Conflict of interest

This study conforms to the Italian legal requirements on conservation and welfare. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enríquez Espinosa, A.C., Shimano, Y., Rolim, S. et al. Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. J Insect Conserv 24, 1061–1072 (2020). https://doi.org/10.1007/s10841-020-00275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00275-7

Keywords

Navigation