Skip to main content
Log in

Human, Forest and vegetation health metrics of ground-level ozone (SOMO35, AOT40f and AOT40v) in Tehran

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate the spatial O3 indices (SOMO35: annual sum of maximum daily 8-h ozone means over 35 ppb, AOT40: the accumulated exposure over an hourly threshold of 40 ppb during daylight hours between 8:00 and 20:00 in the growing seasons of plants) in Tehran (2019–2020).

Methods

The data of ambient O3 concentrations, measured at twenty-three regulatory ambient air quality monitoring stations (AQMSs) in Tehran, were obtained.

Results

The annual mean O3 concentrations were found to be 15.8–25.7 ppb; the highest and lowest annual mean concentration of ambient O3 were observed in Shahrdari 22 and Shahr-e-Rey stations, respectively. Spatial distribution of exposure to O3 across Tehran was in the range of 1.36–1.64; the highest O3 concentrations were observed in the northern, west and south-western parts of Tehran, while the central and south areas of Tehran city experienced low to moderate concentrations. The indices of SOMO35, AOT40f and AOT40v across AQMSs in Tehran was in the range of 1830–6437 ppb. Days, 10,613–39,505 ppb.h and 4979–16,804 ppb.h, respectively. For Tehran city, the indices of SOMO35 and AOT40f were 4138 ppb. days and 27,556 ppb.h respectively. Our results revealed that the value of SOMO35 across AQMSs of Tehran was higher than the recommended target value of 3000 ppb. days.

Conclusions

To reduce O3 pollution and its effects on both human and plants health, the governmental organizations should take appropriate sustainable control policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, et al. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int. 2019;131:104966.

    Article  CAS  Google Scholar 

  2. Ramos Y, Requia WJ, St-Onge B, Blanchet J-P, Kestens Y, Smargiassi A. Spatial modeling of daily concentrations of ground-level ozone in Montreal, Canada: a comparison of geostatistical approaches. Environ Res. 2018;166:487–96.

    Article  CAS  Google Scholar 

  3. Agathokleous E, Araminiene V, Belz RG, Calatayud V, De Marco A, Domingos M, et al. A quantitative assessment of hormetic responses of plants to ozone. Environ Res. 2019;176:108527.

    Article  CAS  Google Scholar 

  4. Ezimand K, Kakroodi A. Prediction and spatio–temporal analysis of ozone concentration in a metropolitan area. Ecol Indic. 2019;103:589–98.

    Article  Google Scholar 

  5. Qiao X, Wang P, Zhang J, Zhang H, Tang Y, Hu J, et al. Spatial-temporal variations and source contributions to forest ozone exposure in China. Sci Total Environ. 2019;674:189–99.

    Article  CAS  Google Scholar 

  6. Liu H, Zhang M, Han X, Li J, Chen L. Episode analysis of regional contributions to tropospheric ozone in Beijing using a regional air quality model. Atmos Environ. 2019;199:299–312.

    Article  CAS  Google Scholar 

  7. Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, et al. Long-term trends and health impact of PM2. 5 and O3 in Tehran, Iran, 2006–2015. Environ Int. 2018;114:37–49.

    Article  CAS  Google Scholar 

  8. Liu R, Ma Z, Liu Y, Shao Y, Zhao W, Bi J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ Int. 2020;142:105823.

    Article  CAS  Google Scholar 

  9. Hakim, Z.Q., Archer-Nicholls, S., Beig, G., Folberth, G.A., Sudo, K., Abraham, L., Ghude, S., Henze, D. and Archibald, A. Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons–a focus on the Indian subcontinent. 2019.

  10. Hadei M, Hopke PK, Nazari SSH, Yarahmadi M, Shahsavani A, Alipour MR. Estimation of mortality and hospital admissions attributed to criteria air pollutants in Tehran metropolis, Iran (2013-2016). Aerosol Air Qual Res. 2017;17:2474–81.

    Article  CAS  Google Scholar 

  11. Wang P, Chen Y, Hu J, Zhang H, Ying Q. Source apportionment of summertime ozone in China using a source-oriented chemical transport model. Atmos Environ. 2019;211:79–90.

    Article  CAS  Google Scholar 

  12. Garg A, Gupta N. A comprehensive study on spatio-temporal distribution, health risk assessment and ozone formation potential of BTEX emissions in ambient air of Delhi, India. Science of the Total Environment. 2019;659:1090–9.

    Article  CAS  Google Scholar 

  13. Strode SA, Ziemke JR, Oman LD, Lamsal LN, Olsen MA, Liu J. Global changes in the diurnal cycle of surface ozone. Atmos Environ. 2019;199:323–33.

    Article  CAS  Google Scholar 

  14. Boleti E, Hueglin C, Takahama S. Trends of surface maximum ozone concentrations in Switzerland based on meteorological adjustment for the period 1990–2014. Atmos Environ. 2019;213:326–36.

    Article  CAS  Google Scholar 

  15. Zhang L, Hoshika Y, Carrari E, Badea O, Paoletti E. Ozone risk assessment is affected by nutrient availability: evidence from a simulation experiment under free air controlled exposure (FACE). Environ Pollut. 2018;238:812–22.

    Article  CAS  Google Scholar 

  16. Yousefian F, Faridi S, Azimi F, Aghaei M, Shamsipour M, Yaghmaeian K, et al. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci Rep. 2020;10:1–11.

    Article  Google Scholar 

  17. Heger, M. and Sarraf, M. Air pollution in Tehran: health costs, sources, and policies; World Bank, 2018.

  18. Faridi S, Niazi S, Yousefian F, Azimi F, Pasalari H, Momeniha F, et al. Spatial homogeneity and heterogeneity of ambient air pollutants in Tehran. Sci Total Environ. 2019;697:134123.

    Article  CAS  Google Scholar 

  19. Maji KJ, Ye W-F, Arora M, Nagendra SS. PM2. 5-related health and economic loss assessment for 338 Chinese cities. Environ Int. 2018;121:392–403.

    Article  CAS  Google Scholar 

  20. Jafari AJ, Faridi S, Momeniha F. Temporal variations of atmospheric benzene and its health effects in Tehran megacity (2010-2013). Environ Sci Pollut Res. 2019;26:17214–23.

    Article  CAS  Google Scholar 

  21. Yunesian M, Rostami R, Zarei A, Fazlzadeh M, Janjani H. Exposure to high levels of PM2. 5 and PM10 in the metropolis of Tehran and the associated health risks during 2016–2017. Microchem J. 2019;150:104174.

    Article  CAS  Google Scholar 

  22. Janjani H, Hassanvand MS, Kashani H, Yunesian M. Characterizing multiple air pollutant indices based on their effects on the mortality in Tehran, Iran during 2012–2017. Sustain Cities Soc. 2020;59:102222.

    Article  Google Scholar 

  23. Sicard P, Serra R, Rossello P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ Res. 2016;149:122–44.

    Article  CAS  Google Scholar 

  24. Karimi A, Shirmardi M, Hadei M, Birgani YT, Neisi A, Takdastan A, et al. Concentrations and health effects of short-and long-term exposure to PM2. 5, NO2, and O3 in ambient air of Ahvaz city, Iran (2014–2017). Ecotoxicol Environ Saf. 2019;180:542–8.

    Article  CAS  Google Scholar 

  25. Lin Y, Jiang F, Zhao J, Zhu G, He X, Ma X, et al. Impacts of O3 on premature mortality and crop yield loss across China. Atmos Environ. 2018;194:41–7.

    Article  CAS  Google Scholar 

  26. Li P, De Marco A, Feng Z, Anav A, Zhou D, Paoletti E. Nationwide ground-level ozone measurements in China suggest serious risks to forests. Environ Pollut. 2018;237:803–13.

    Article  CAS  Google Scholar 

  27. Zhao H, Zheng Y, Zhang Y, Li T. Evaluating the effects of surface O3 on three main food crops across China during 2015–2018. Environ Pollut. 2020;258:113794.

    Article  CAS  Google Scholar 

  28. Alizadeh-Choobari O, Bidokhti A, Ghafarian P, Najafi M. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran. Atmos Environ. 2016;141:443–53.

    Article  CAS  Google Scholar 

  29. Jahangir MS, Moghim S. Assessment of the urban heat island in the city of Tehran using reliability methods. Atmos Res. 2019;225:144–56.

    Article  Google Scholar 

  30. Barzeghar V, Sarbakhsh P, Hassanvand MS, Faridi S, Gholampour A. Long-term trend of ambient air PM10, PM2. 5, and O3 and their health effects in Tabriz city, Iran, during 2006–2017. Sustain Cities Soc. 2020;54:101988.

    Article  Google Scholar 

  31. Amini H, Hosseini V, Schindler C, Hassankhany H, Yunesian M, Henderson SB, et al. Spatiotemporal description of BTEX volatile organic compounds in a middle eastern megacity: Tehran study of exposure prediction for environmental health research (Tehran SEPEHR). Environ Pollut. 2017;226:219–29.

    Article  CAS  Google Scholar 

  32. Emam B, Shahsavani A, Khodagholi F, Zarandi SM, Hopke PK, Hadei M, et al. Effects of PM 2.5 and gases exposure during prenatal and early-life on autism–like phenotypes in male rat offspring. Particle and Fibre Toxicology. 2020;17:1–16.

    Article  Google Scholar 

  33. Faridi S, Naddafi K, Kashani H, Nabizadeh R, Alimohammadi M, Momeniha F, et al. Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults. Sci Total Environ. 2017;593:380–9.

    Article  Google Scholar 

  34. Faraji M, Pourpak Z, Naddafi K, Nodehi RN, Nicknam MH, Shamsipour M, et al. Effects of airborne particulate matter (PM10) from dust storm and thermal inversion on global DNA methylation in human peripheral blood mononuclear cells (PBMCs) in vitro. Atmos Environ. 2018;195:170–8.

    Article  CAS  Google Scholar 

  35. Hassanvand MS, Naddafi K, Kashani H, Faridi S, Kunzli N, Nabizadeh R, et al. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ Pollut. 2017;223:695–704.

    Article  CAS  Google Scholar 

  36. Taghvaee S, Sowlat MH, Hassanvand MS, Yunesian M, Naddafi K, Sioutas C. Source-specific lung cancer risk assessment of ambient PM2. 5-bound polycyclic aromatic hydrocarbons (PAHs) in Central Tehran. Environ Int. 2018a;120:321–32.

    Article  CAS  Google Scholar 

  37. Taghvaee S, Sowlat MH, Mousavi A, Hassanvand MS, Yunesian M, Naddafi K, et al. Source apportionment of ambient PM2. 5 in two locations in Central Tehran using the positive matrix factorization (PMF) model. Sci Total Environ. 2018b;628:672–86.

    Article  Google Scholar 

  38. Soleimanian E, Taghvaee S, Mousavi A, Sowlat MH, Hassanvand MS, Yunesian M, et al. Sources and temporal variations of coarse particulate matter (PM) in Central Tehran, Iran. Atmosphere. 2019;10:291.

    Article  CAS  Google Scholar 

  39. Amini H, Nhung NTT, Schindler C, Yunesian M, Hosseini V, Shamsipour M, et al. Short-term associations between daily mortality and ambient particulate matter, nitrogen dioxide, and the air quality index in a middle eastern megacity. Environ Pollut. 2019;254:113121.

    Article  CAS  Google Scholar 

  40. Bayat R, Ashrafi K, Motlagh MS, Hassanvand MS, Daroudi R, Fink G, et al. Health impact and related cost of ambient air pollution in Tehran. Environ Res. 2019;176:108547.

    Article  CAS  Google Scholar 

  41. Hadei M, Shahsavani A, Krzyzanowski M, Querol X, Stafoggia M, Nazari SSH, et al. Burden of mortality attributed to PM2. 5 exposure in cities of Iran; contribution of short-term pollution peaks. Atmos Environ. 2020;224:117365.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tehran Air Quality Control Company for providing ambient air pollutant concentrations data.

Funding

The present study was funded by grant number 97000507 from Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

SF and AA deigned the study. SF and HF conducted the study and gathered all data. SF and HA analyzed the data. SF drafted the manuscript. AA, HF, SK and HA revised the manuscript.

Corresponding author

Correspondence to Amir Adibzadeh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridi, S., Akbari, H., Faridi, H. et al. Human, Forest and vegetation health metrics of ground-level ozone (SOMO35, AOT40f and AOT40v) in Tehran. J Environ Health Sci Engineer 18, 1351–1358 (2020). https://doi.org/10.1007/s40201-020-00552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00552-2

Keywords

Navigation