Skip to main content
Log in

Performance of photocatalytic ozonation process for pentachlorophenol (PCP) removal in aqueous solution using graphene-TiO2 nanocomposite (UV/G-TiO2/O3)

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the efficiency of photocatalytic ozonation process using graphene-dioxide titanium nanocomposite in removing Pentachlorophenol (PCP) from aqueous solutions. In this study, nanocomposites with graphene to TiO2(G/T) ratios of 1:10 and 1:20 were synthesized by hydrothermal method, and its characteristics were assessed using various analyses, SEM, XRD, FTIR, TEM, BET and TGA. In this process, the effects of parameters including O3 concentration (0.25–1.25 mg/L), nanocomposite concentration (50–500 mg/L), initial PCP concentration (10–100 mg/L), and time (10–60 min), were studied. The results showed that PCP removal efficiency was increased by decreasing solute concentration. Increasing nanocomposite dose to 100 mg/L was led to an increase in efficiency (99.1%), but then a decreasing trend was observed. Increasing the concentration of ozone, up to specific value, also enhanced the efficiency but then had a negative effect on process efficiency. Furthermore, the optimum ratio of the catalyst was determined to be 1:20. The highest efficiency of the process for initial pentachlorophenol concentration of 100 mg/L was obtained 98.82% in optimum conditions (catalyst dose of 100 mg/L and 60 min). It is concluded that the photocatalytic ozonation process using graphene-dioxide titanium nanocomposite had the highest efficiency in removal and mineralization of PCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dargahi A, Ansari A, Nematollahi D, Asgari G, Shokoohi R, Samarghandi MR. Parameter optimization and degradation mechanism for electrocatalytic degradation of 2, 4-diclorophenoxyacetic acid (2, 4-D) herbicide by lead dioxide electrodes. RSC Adv. 2019;9(9):5064–75.

    CAS  Google Scholar 

  2. Yu L, Yang X, Ye Y, Peng X, Wang D. Silver nanoparticles decorated anatase TiO2 nanotubes for removal of pentachlorophenol from water. J Colloid Interface Sci. 2015;453:100–6.

    CAS  Google Scholar 

  3. Shankar A. Kongot M. Kumar A. Removal of pentachlorophenol pesticide from aqueous solutions using modified chitosan. Arabian Journal of Chemistry: Saini VK; 2018.

    Google Scholar 

  4. Rahmani AR, Jorfi S, Asgari G, Zamani F, Almasi H, Masoumi Z. A comparative study on the removal of pentachlorophenol using copper-impregnated pumice and zeolite. Journal of Environmental Chemical Engineering. 2018;6(2):3342–8.

    CAS  Google Scholar 

  5. Mishra S, Maiti A. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Pollut Res. 2018;25(9):8286–314. https://doi.org/10.1007/s11356-018-1273-2.

    Article  CAS  Google Scholar 

  6. Devi P, Saroha AK. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol. 2014;169:525–31.

    CAS  Google Scholar 

  7. Garbou AM, Clausen CA, Yestrebsky CL. Comparative study for the removal and destruction of pentachlorophenol using activated magnesium treatment systems. Chemosphere. 2017;166:267–74.

    CAS  Google Scholar 

  8. Chen Y, Lin C-J, Fu S, Zhan H. Effect of oxygen availability on the removal efficiency and sludge characteristics during pentachlorophenol (PCP) biodegradation in a coupled granular sludge system. Water Sci Technol. 2010;61(7):1885–93.

    CAS  Google Scholar 

  9. Long M, Ilhan ZE, Xia S, Zhou C, Rittmann BE. Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). Water Res. 2018;144:134–44.

    CAS  Google Scholar 

  10. Papazi A, Karamanli M, Kotzabasis K. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—the biodegradation strategy of microalgae. J Biotechnol. 2019;296:61–8.

    CAS  Google Scholar 

  11. Prabowo B, Veriansyah B, Jae-Duck K. Hydrothermal decomposition of pentachlorophenol in subcritical and supercritical water with sodium hydroxide addition. J Environ Sci. 2007;19(6):663–6.

    CAS  Google Scholar 

  12. Ho D, Senthilnanthan M, Mohammad J, Vigneswaran S, Ngo H, Mahinthakumar G, et al. The application of photocatalytic oxidation in removing pentachlorophenol from contaminated water. Journal of Advanced Oxidation Technologies. 2010;13(1):21–6.

    CAS  Google Scholar 

  13. Li Y, Niu J, Yin L, Wang W, Bao Y, Chen J, et al. Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals. J Environ Sci. 2011;23(11):1911–8.

    CAS  Google Scholar 

  14. Azizi S, Samarghandi MR. Evaluation of the photocatalytic removal of pentachlorophenol by uv/zno from aqueous solutions. 2015.

  15. Niu J, Bao Y, Li Y, Chai Z. Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2–Sb electrodes. Chemosphere. 2013;92(11):1571–7.

    CAS  Google Scholar 

  16. Xu F, Chang L, Duan X, Bai W, Sui X, Zhao X. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis. Electrochim Acta. 2019;300:53–66.

    CAS  Google Scholar 

  17. Liu W, Liu H, Ai Z. In-situ generated H2O2 induced efficient visible light photo-electrochemical catalytic oxidation of PCP-Na with TiO2. J Hazard Mater. 2015;288:97–103.

    CAS  Google Scholar 

  18. Zazouli MA, Ghanbari F, Yousefi M, Madihi-Bidgoli S. Photocatalytic degradation of food dye by Fe3O4–TiO2 nanoparticles in presence of peroxymonosulfate: the effect of UV sources. Journal of environmental chemical engineering. 2017;5(3):2459–68.

    CAS  Google Scholar 

  19. Seid-Mohammadi A, Asgarai G, Ghorbanian Z, Dargahi A. The removal of cephalexin antibiotic in aqueous solutions by ultrasonic waves/hydrogen peroxide/nickel oxide nanoparticles (US/H2O2/NiO) hybrid process. Sep Sci Technol. 2019:1–11.

  20. Veisi F, Zazouli MA, Ebrahimzadeh MA, Charati JY, Dezfoli AS. Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles. Environ Sci Pollut Res. 2016;23(21):21846–60.

    CAS  Google Scholar 

  21. Silva DB, Cruz-Alcalde A, Sans C, Giménez J, Esplugas S. Performance and kinetic modelling of photolytic and photocatalytic ozonation for enhanced micropollutants removal in municipal wastewaters. Appl Catal B Environ. 2019;249:211–7.

    Google Scholar 

  22. Wu D, Li X, Zhang J, Chen W, Lu P, Tang Y, et al. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation. Sep Purif Technol. 2018;207:255–61.

    CAS  Google Scholar 

  23. Yu D, Li L, Wu M, Crittenden JC. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl Catal B Environ. 2019;251:66–75.

    CAS  Google Scholar 

  24. Shahamat YD, Zazouli MA, Asgharnia H, Dehghanifard E. Evaluation of rapid purification of high concentrations of 2, 4-Dinitrophenol in wastewater using catalytic ozonation with carboneus nanocomposite. Journal of Mazandaran University of Medical Sciences. 2016;25(133):138–49.

    Google Scholar 

  25. Guo Y, Yang L, Cheng X, Wang X. The application and reaction mechanism of catalytic ozonation in water treatment. J Environ Anal Toxicol. 2012;2(7):2161–0525.1000150.

    Google Scholar 

  26. Emam EA. Effect of ozonation combined with heterogeneous catalysts and ultraviolet radiation on recycling of gas-station wastewater. Egypt J Pet. 2012;21(1):55–60.

    CAS  Google Scholar 

  27. Zhang Y, Zhou Z, Chen T, Wang H, Lu W. Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci. 2014;26(10):2114–22.

    Google Scholar 

  28. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater. 2010;20(23):4175–81.

    CAS  Google Scholar 

  29. Pan X, Zhao Y, Wang S, Fan Z. TiO2/graphene nanocomposite for photocatalytic application. Materials and Processes for Energy: Communicating Current Research and Technological Developments; Méndez-Vilas, A, Ed. 2013:913–20.

  30. Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, et al. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. international journal of hydrogen energy. 2012;37(3):2224–30.

  31. Chang Y-N, Ou X-M, Zeng G-M, Gong J-L, Deng C-H, Jiang Y, et al. Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation. Appl Surf Sci. 2015;343:1–10.

    CAS  Google Scholar 

  32. Zhu J, Chen M, He Q, Shao L, Wei S, Guo Z. An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv. 2013;3(45):22790–824.

    CAS  Google Scholar 

  33. Cao M, Wang P, Ao Y, Wang C, Hou J, Qian J. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: graphene oxide/magnetite/cerium-doped titania. J Colloid Interface Sci. 2016;467:129–39.

    CAS  Google Scholar 

  34. Xiao S, Cheng M, Zhong H, Liu Z, Liu Y, Yang X, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chemical Engineering Journal. 2020;384:123265. doi: https://doi.org/10.1016/j.cej.2019.123265.

  35. Wen Y, Ding H, Shan Y. Preparation and visible light photocatalytic activity of Ag/TiO 2/graphene nanocomposite. Nanoscale. 2011;3(10):4411–7.

    CAS  Google Scholar 

  36. Zhang Y, Tang Z-R, Fu X, Xu Y-J. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano. 2011;5(9):7426–35.

    CAS  Google Scholar 

  37. Foroutan R, Mohammadi R, Sohrabi N, Sahebi S, Farjadfard S, Esvandi Z, et al. Calcined alluvium of agricultural streams as a recyclable and cleaning tool for cationic dye removal from aqueous media. Environmental Technology & Innovation. 2020;17:100530. https://doi.org/10.1016/j.eti.2019.100530.

  38. Bonyadi Z, Kumar PS, Foroutan R, Kafaei R, Arfaeinia H, Farjadfard S, et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater. Korean J Chem Eng. 2019;36(10):1595–603. https://doi.org/10.1007/s11814-019-0373-0.

    Article  CAS  Google Scholar 

  39. Zhu J, Zhu L, Zhu R, Tian S, Li J. Surface microtopography of surfactant modified montmorillonite. Appl Clay Sci. 2009;45(1–2):70–5.

    CAS  Google Scholar 

  40. Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-D, Kim S, Chung JS, et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J. 2011;170(1):226–32.

    CAS  Google Scholar 

  41. Foroutan R, Mohammadi R, Razeghi J, B R. Ramavandi B. Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. Algal Research. 2019;40(1):101509.

  42. Esmaeili H, Foroutan R, Jafari D, M AR. Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ ferric molybdate nanocomposite. Korean Journal of Chemical Engineering. 2020;37:804–814.

  43. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, et al. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012;2(6):949–56.

    CAS  Google Scholar 

  44. Wang F, Zhang K. Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A Chem. 2011;345(1–2):101–7.

    CAS  Google Scholar 

  45. Mahmoodi NM. Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination. 2011;279(1–3):332–7.

    CAS  Google Scholar 

  46. Mahmoodi NM. Photocatalytic ozonation of dyes using multiwalled carbon nanotube. J Mol Catal A Chem. 2013;366:254–60.

    CAS  Google Scholar 

  47. Beltrán FJ, Aguinaco A, García-Araya JF. Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water. Water Res. 2009;43(5):1359–69.

    Google Scholar 

  48. Samarghandi M, Rahmani A, Asgari G, Ahmadidoost G, Dargahi A. Photocatalytic removal of cefazolin from aqueous solution by AC prepared from mango seed+ ZnO under uv irradiation. Global Nest Journal. 2018;20(2):399–407.

    CAS  Google Scholar 

  49. Rodríguez EM, Fernández G, Alvarez PM, Beltrán FJ. TiO2 and Fe (III) photocatalytic ozonation processes of a mixture of emergent contaminants of water. Water Res. 2012;46(1):152–66.

    Google Scholar 

  50. Xu X-R, Li X-Y, Li X-Z, Li H-B. Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes. Sep Purif Technol. 2009;68(2):261–6.

    CAS  Google Scholar 

  51. Orge C, Pereira MFR, Faria JL. Photocatalytic ozonation of model aqueous solutions of oxalic and oxamic acids. Appl Catal B Environ. 2015;174:113–9.

    Google Scholar 

  52. Dong S, Zhou D, Bi X. Liquid phase heterogeneous photocatalytic ozonation of phenol in liquid–solid fluidized bed: simplified kinetic modeling. Particuology. 2010;8(1):60–6.

    CAS  Google Scholar 

  53. Li L, Zhu W, Zhang P, Chen Z, Han W. Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res. 2003;37(15):3646–51.

    CAS  Google Scholar 

  54. Nishimoto S, Mano T, Kameshima Y, Miyake M. Photocatalytic water treatment over WO3 under visible light irradiation combined with ozonation. Chem Phys Lett. 2010;500(1–3):86–9.

    CAS  Google Scholar 

  55. Chen Y, Lu A, Li Y, Zhang L, Yip HY, Zhao H, et al. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environmental science & technology. 2011;45(13):5689–95.

    CAS  Google Scholar 

  56. Ali MM, Sandhya K. Visible light responsive titanium dioxide–cyclodextrin–fullerene composite with reduced charge recombination and enhanced photocatalytic activity. Carbon. 2014;70:249–57.

    Google Scholar 

  57. Raja P, Bozzi A, Mansilla H, Kiwi J. Evidence for superoxide-radical anion, singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-4-hydroxyphenylmethylcarbinol). J Photochem Photobiol A Chem. 2005;169(3):271–8.

    CAS  Google Scholar 

Download references

Acknowledgements

This article has extracted from the MSc thesis of Maryam Yousefi, the student of Mazandaran University of Medical Sciences. The code of Research Ethics is IR.MAZUMS.REC.1394.1668. The authors appreciate the deputy of Research and Technology of Mazandaran University of Medical Sciences for the financial support of this project. Also, the authors would like to appreciate Dr. Behrouz Akbari-Adergani for his aids in synthesis of studied nanocomposite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Yousefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zazouli, M.A., Yousefi, M., Ghanbari, F. et al. Performance of photocatalytic ozonation process for pentachlorophenol (PCP) removal in aqueous solution using graphene-TiO2 nanocomposite (UV/G-TiO2/O3). J Environ Health Sci Engineer 18, 1083–1097 (2020). https://doi.org/10.1007/s40201-020-00529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00529-1

Keywords

Navigation