Skip to main content
Log in

Kinematic Chain Optimization Design Based on Deformation Sensitivity Analysis of a Five-Axis Machine Tool

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper focuses on optimization of kinematic chain to reduce force-induced error in the scheme design phase of a five-axis machine tool. After conducting process planning on the machining target, local deformation of motion units in cutting positions is considered using a geometric way. A mathematical model is then established describing the influence of local deformation error on the general machining error through homogeneous transformation matrices. Conceptual model of the machine tool is constructed to obtain deformation distribution using static FEA. Error sensitivity coefficients are then calculated and compared among all alternative kinematic chains to select the optimized scheme. The proposed method is verified through a designing example of a five-axis vertical machining center. The optimized kinematic chain could lower the magnitude of deformation sensitivities by 9.69% and increase error equalization variance by 71.25% compared to the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gadalla, M., & Xue, D. (2017). Optimal design of a reconfigurable machine tool considering machine configurations and configuration changes. Procedia CIRP, 60, 446–451. https://doi.org/10.1016/j.procir.2017.01.044.

    Article  Google Scholar 

  2. López De Lacalle, L. N., & Lamikiz, A. (2009). Machine tools for high performance machining. London: Springer. https://doi.org/10.1007/978-1-84800-380-4.

    Book  Google Scholar 

  3. Lekhmus, M. Y., Fetsak, S. I., & Amirov, R. F. (2017). Structural synthesis of machine-tool configurations. Russian Engineering Research, 37(4), 335–337. https://doi.org/10.3103/S1068798X17040153.

    Article  Google Scholar 

  4. Gönnheimer, P., Hillenbrand, J., Betz-Mors, T., Bischof, P., Mohr, L., & Fleischer, J. (2019). Auto-configuration of a digital twin for machine tools by intelligent crawling. In Production at the leading edge of technology, pp. 543–552. https://doi.org/10.1007/978-3-662-60417-5_54.

  5. Chen, W., Luo, X., Su, H., & Wardle, F. (2016). An integrated system for ultra-precision machine tool design in conceptual and fundamental design stage. International Journal of Advanced Manufacturing Technology, 84(5–8), 1177–1183. https://doi.org/10.1007/s00170-015-7780-0.

    Article  Google Scholar 

  6. Anand, K. V., & Udhayakumar, S. (2019). Design of adaptable pin configuration machine bed optimized with genetic approach for sheet metal cutting process. Journal of Intelligent Manufacturing, 30(3), 1319–1333. https://doi.org/10.1007/s10845-017-1327-1.

    Article  Google Scholar 

  7. Wang, G., Wang, S., Huang, S., Shang, X., & Yan, Y. (2020). Feature-driven design of reconfigurable machine tool configurations. In Reconfigurable manufacturing systems: From design to implementation, pp. 89–122. https://doi.org/10.1007/978-3-030-28782-5_5.

  8. Bohez, E. L. (2002). Five-axis milling machine tool kinematic chain design and analysis. International Journal of Machine Tools and Manufacture, 42(4), 505–520. https://doi.org/10.1016/S0890-6955(01)00134-1.

    Article  Google Scholar 

  9. Wu, B. C., Young, G. S., & Huang, T. Y. (2000). Application of a two-level optimization process to conceptual structural design of a machine tool. International Journal of Machine Tools and Manufacture, 40(6), 783–794. https://doi.org/10.1016/S0890-6955(99)00113-3.

    Article  Google Scholar 

  10. Huo, D., Cheng, K., & Wardle, F. (2010). Design of a five-axis ultra-precision micro-milling machine-UltraMill. Part 1: Holistic design approach, design considerations and specifications. International Journal of Advanced Manufacturing Technology, 47(9–12), 867–877. https://doi.org/10.1007/s00170-009-2128-2.

    Article  Google Scholar 

  11. Tutunea-Fatan, O. R., & Bhuiya, M. S. H. (2011). Comparing the kinematic efficiency of five-axis machine tool configurations through nonlinearity errors. CAD Computer Aided Design, 43(9), 1163–1172. https://doi.org/10.1016/j.cad.2011.05.003.

    Article  Google Scholar 

  12. Wang, G., Shang, X., Yan, Y., Allen, J. K., & Mistree, F. (2018). A tree-based decision method for the configuration design of reconfigurable machine tools. Journal of Manufacturing Systems, 49, 143–162. https://doi.org/10.1016/j.jmsy.2018.07.003.

    Article  Google Scholar 

  13. Wang, Y., Zhang, G., & Han, L. (2019). A methodology of setting module groups for the design of reconfigurable machine tools. International Journal of Advanced Manufacturing Technology, 104(5–8), 2133–2147. https://doi.org/10.1007/s00170-019-03337-6.

    Article  Google Scholar 

  14. Pham, V. D., & Song, C. K. (2018). A novel dynamic model for multiple configurations of machine tools using a coordinate transformation method. International Journal of Advanced Manufacturing Technology, 95(1–4), 27–42. https://doi.org/10.1007/s00170-017-1186-0.

    Article  Google Scholar 

  15. Zhang, C., Jiang, P., Cheng, K., Xu, X. W., & Ma, Y. (2016). Configuration design of the add-on cyber-physical system with CNC machine tools and its application perspectives. Procedia CIRP, 56, 360–365. https://doi.org/10.1016/j.procir.2016.10.040.

    Article  Google Scholar 

  16. Lajili, M., Chanal, H., Bouzgarrou, C., & Duc, E. (2019). A new approach for machine-tool architecture selection at preliminary design stage. In Lecture Notes in Mechanical Engineering, pp. 95–104. https://doi.org/10.1007/978-3-030-12346-8_10.

  17. Echerfaoui, Y., El Ouafi, A., & Chebak, A. (2018). Experimental investigation of dynamic errors in coordinate measuring machines for high speed measurement. International Journal of Precision Engineering and Manufacturing, 19(8), 1115–1124. https://doi.org/10.1007/s12541-018-0132-x.

    Article  Google Scholar 

  18. Ibaraki, S., Yoshida, I., & Asano, T. (2019). A machining test to identify rotary axis geometric errors on a five-axis machine tool with a swiveling rotary table for turning operations. Precision Engineering, 55, 22–32. https://doi.org/10.1016/j.precisioneng.2018.08.003.

    Article  Google Scholar 

  19. Wang, J., Cheng, C., & Li, H. (2020). A novel approach to separate geometric error of the rotary axis of multi-axis machine tool using laser tracker. International Journal of Precision Engineering and Manufacturing,. https://doi.org/10.1007/s12541-020-00329-5.

    Article  Google Scholar 

  20. Schmitt, R., & Peterek, M. (2015). Traceable measurements on machine tools-thermal influences on machine tool structure and measurement uncertainty. Procedia CIRP, 33, 576–580. https://doi.org/10.1016/j.procir.2015.06.087.

    Article  Google Scholar 

  21. Liu, S., & Lin, M. (2019). Thermal-mechanical coupling analysis and experimental study on CNC machine tool feed mechanism. International Journal of Precision Engineering and Manufacturing, 20(6), 993–1006. https://doi.org/10.1007/s12541-019-00069-1.

    Article  Google Scholar 

  22. Pomares, J., Jara, C. A., Pérez, J., & Torres, F. (2015). Direct visual serving framework based on optimal control for redundant joint structures. International Journal of Precision Engineering and Manufacturing, 16(2), 267–274. https://doi.org/10.1007/s12541-015-0035-z.

    Article  Google Scholar 

  23. Lyu, D., Liu, Q., Liu, H., & Zhao, W. (2020). Dynamic error of CNC machine tools: A state-of-the-art review. International Journal of Advanced Manufacturing Technology, 106(5–6), 1869–1891. https://doi.org/10.1007/s00170-019-04732-9.

    Article  Google Scholar 

  24. Xu, P., Li, B., Cheung, C. F., & Zhang, J. F. (2017). Stiffness modeling and optimization of a 3-DOF parallel robot in a serial-parallel polishing machine. International Journal of Precision Engineering and Manufacturing, 18(4), 497–507. https://doi.org/10.1007/s12541-017-0060-1.

    Article  Google Scholar 

  25. Duong, T. H., & Kim, H. C. (2015). Deformation analysis of rectangular channel structures in micro pattern machining. International Journal of Precision Engineering and Manufacturing, 16(4), 619–627. https://doi.org/10.1007/s12541-015-0083-4.

    Article  Google Scholar 

  26. Pan, Y., & Xu, L. (2015). Vibration analysis and experiments on electrochemical micro-machining using cathode vibration feed system. International Journal of Precision Engineering and Manufacturing, 16(1), 143–149. https://doi.org/10.1007/s12541-015-0018-0.

    Article  Google Scholar 

  27. Sagris, D., Davids, C., Stergianni, E., Tsiafis, C., & Tsiafis, I. (2017). Computational and experimental analysis of machine tool vibrations in micro-milling. In MATEC web of conferences, Vol. 112. https://doi.org/10.1051/matecconf/201711201022

  28. Fesperman, R. R., Moylan, S. P., Vogl, G. W., & Donmez, M. A. (2015). Reconfigurable data driven virtual machine tool: Geometric error modeling and evaluation. CIRP Journal of Manufacturing Science and Technology, CIRP, 10, 120–130. https://doi.org/10.1016/j.cirpj.2015.03.001.

    Article  Google Scholar 

  29. Wang, J. D., Wang, Q. J., & Li, H. T. (2019). The method of geometric error measurement of NC machine tool based on the principle of space vector’s direction measurement. International Journal of Precision Engineering and Manufacturing, 20(4), 511–524. https://doi.org/10.1007/s12541-019-00062-8.

    Article  Google Scholar 

  30. Gaska, P., Gaska, A., & Gruza, M. (2017). Challenges for modeling of five-axis coordinate measuring systems. Applied Sciences (Switzerland), 7(8), 803. https://doi.org/10.3390/app7080803.

    Article  Google Scholar 

  31. Ibaraki, S., & Yoshida, I. (2017). A five-axis machining error simulator for rotary-axis geometric errors using commercial machining simulation software. International Journal of Automation Technology, 11(2), 179–187. https://doi.org/10.20965/ijat.2017.p0179.

    Article  Google Scholar 

  32. Flynn, J. M., Muelaner, J. E., Dhokia, V., & Newman, S. T. (2016). Improving error models of machine tools with metrology data. In Procedia CIRP, Elsevier B.V., Vol. 52, pp. 204–209. https://doi.org/10.1016/j.procir.2016.07.053

  33. Viprey, F., Nouira, H., Lavernhe, S., & Tournier, C. (2016). Novel multi-feature bar design for machine tools geometric errors identification. Precision Engineering, 46, 323–338. https://doi.org/10.1016/j.precisioneng.2016.06.002.

    Article  Google Scholar 

  34. Zhong, X., Liu, H., Mao, X., & Li, B. (2019). An optimal method for improving volumetric error compensation in machine tools based on squareness error identification. International Journal of Precision Engineering and Manufacturing, 20(10), 1653–1665. https://doi.org/10.1007/s12541-019-00191-0.

    Article  Google Scholar 

  35. Yan, H., Cao, Y., & Yang, J. (2016). Statistical tolerance analysis based on good point set and homogeneous transform matrix. Procedia CIRP, 43, 178–183. https://doi.org/10.1016/j.procir.2016.02.042.

    Article  Google Scholar 

  36. Lee, K. I., Lee, J. C., & Yang, S. H. (2018). Optimal on-machine measurement of position-independent geometric errors for rotary axes in five-axis machines with a universal head. International Journal of Precision Engineering and Manufacturing, 19(4), 545–551. https://doi.org/10.1007/s12541-018-0066-3.

    Article  Google Scholar 

  37. Liu, Z., Xu, J., Cheng, Q., Zhao, Y., Pei, Y., & Yang, C. (2018). Trajectory planning with minimum synthesis error for industrial robots using screw theory. International Journal of Precision Engineering and Manufacturing, 19(2), 183–193. https://doi.org/10.1007/s12541-018-0021-3.

    Article  Google Scholar 

  38. Xi, X. C., Liu, H. D., Chen, H., Ye, L., & Zhao, W. S. (2019). Kinematics for a six-axis EDM machine by screw theory and its application in feedrate planning in EDM for shrouded blisks. International Journal of Advanced Manufacturing Technology, 105(1–4), 1457–1467. https://doi.org/10.1007/s00170-019-04311-y.

    Article  Google Scholar 

  39. Wang, K., Du, S., & Xi, L. (2020). Three-dimensional tolerance analysis modelling of variation propagation in multi-stage machining processes for general shape workpieces. International Journal of Precision Engineering and Manufacturing, 21(1), 31–44. https://doi.org/10.1007/s12541-019-00202-0.

    Article  Google Scholar 

  40. Park, D. K., Lee, G. I., Gao, J. C., & Kim, J. Y. (2016). Research on the design of the ultra-high-precision positioning control error compensation. International Journal of Precision Engineering and Manufacturing, 17(10), 1351–1358. https://doi.org/10.1007/s12541-016-0160-3.

    Article  Google Scholar 

  41. Xiang, S., Deng, M., Li, H., Du, Z., & Yang, J. (2019). Volumetric error compensation model for five-axis machine tools considering effects of rotation tool center point. International Journal of Advanced Manufacturing Technology, 102(9–12), 4371–4382. https://doi.org/10.1007/s00170-019-03497-5.

    Article  Google Scholar 

  42. Xia, C., Wang, S., Ma, C., Wang, S., & Xiao, Y. (2020). Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model. International Journal of Mechanical Sciences, 169(November), 105319. https://doi.org/10.1016/j.ijmecsci.2019.105319.

    Article  Google Scholar 

  43. Groos, L., Held, C., Keller, F., Wendt, K., Franke, M., & Gerwien, N. (2020). Mapping and compensation of geometric errors of a machine tool at different constant ambient temperatures. Precision Engineering, 63, 10–17. https://doi.org/10.1016/j.precisioneng.2020.01.001.

    Article  Google Scholar 

  44. Tang, H., Zhang, Z., Li, C., & Ko, T. J. (2019). A geometric error modeling method and trajectory optimization applied in laser welding system. International Journal of Precision Engineering and Manufacturing, 20(8), 1423–1433. https://doi.org/10.1007/s12541-019-00151-8.

    Article  Google Scholar 

  45. Li, J., Xie, F., & Liu, X. J. (2016). Geometric error modeling and sensitivity analysis of a five-axis machine tool. International Journal of Advanced Manufacturing Technology, 82(9–12), 2037–2051. https://doi.org/10.1007/s00170-015-7492-5.

    Article  Google Scholar 

  46. Schleich, B., & Wartzack, S. (2018). An approach to the sensitivity analysis in variation simulations considering form deviations. Procedia CIRP, 75, 273–278. https://doi.org/10.1016/j.procir.2018.03.314.

    Article  Google Scholar 

  47. Cheng, Q., Feng, Q., Liu, Z., Gu, P., & Zhang, G. (2016). Sensitivity analysis of machining accuracy of multi-axis machine tool based on POE screw theory and Morris method. International Journal of Advanced Manufacturing Technology, 84(9–12), 2301–2318. https://doi.org/10.1007/s00170-015-7791-x.

    Article  Google Scholar 

  48. Ben Abdessalem, A., & El-Hami, A. (2014). Global sensitivity analysis and multi-objective optimisation of loading path in tube hydroforming process based on metamodelling techniques. International Journal of Advanced Manufacturing Technology, 71(5–8), 753–773. https://doi.org/10.1007/s00170-013-5518-4.

    Article  Google Scholar 

  49. Lagerwall, G., Kiker, G., Muñoz-Carpena, R., & Wang, N. (2014). Global uncertainty and sensitivity analysis of a spatially distributed ecological model. Ecological Modelling, 275, 22–30. https://doi.org/10.1016/j.ecolmodel.2013.12.010.

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this article is funded by National Natural Science Foundation of China (Grant No. 51675478) and National Science Foundation of Zhejiang Province (Grant No. LY18E050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., He, C., Liu, X. et al. Kinematic Chain Optimization Design Based on Deformation Sensitivity Analysis of a Five-Axis Machine Tool. Int. J. Precis. Eng. Manuf. 21, 2375–2389 (2020). https://doi.org/10.1007/s12541-020-00421-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00421-w

Keywords

Navigation