Skip to main content
Log in

Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The interlayer bonding in two-dimensional (2D) materials is particularly important because it is not only related to their physical and chemical stability but also affects their mechanical, thermal, electronic, optical, and other properties. To address this issue, we report the direct characterization of the interlayer bonding in 2D SnSe using contact-resonance atomic force microscopy (CR-AFM) in this study. Site-specific CR spectroscopy and CR force spectroscopy measurements are performed on both SnSe and its supporting SiO2/Si substrate comparatively. Based on the cantilever and contact mechanic models, the contact stiffness and vertical Young’s modulus are evaluated in comparison with SiO2/Si as a reference material. The interlayer bonding of SnSe is further analyzed in combination with the semi-analytical model and density functional theory calculations. The direct characterization of interlayer interactions using this non-destructive methodology of CR-AFM would facilitate a better understanding of the physical and chemical properties of 2D layered materials, specifically for interlayer intercalation and vertical heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Zhang, Y. L. Wang, Y. D. Que, and H. J. Gao, Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy, Chin. Phys. B 24(7), 078104 (2015)

    Article  ADS  Google Scholar 

  2. J. Y. Park, S. Kwon, and J. H. Kim, Nanomechanical and charge transport properties of two-dimensional atomic sheets, Adv. Mater. Interfaces 1(3), 1300089 (2014)

    Article  Google Scholar 

  3. W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)

    Article  ADS  Google Scholar 

  4. R. Wang, X. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)

    Article  ADS  Google Scholar 

  5. D. Pesin and A. H. Macdonald, Spintronics and pseudospintronics in graphene and topological insulators, Nat. Mater. 11(5), 409 (2012)

    Article  ADS  Google Scholar 

  6. T. LaMountain, E. J. Lenferink, Y. Chen, T. K. Stanev, and N. P. Stern, Environmental engineering of transition metal dichalcogenide optoelectronics, Front. Phys. 13(4), 138114 (2018)

    Article  ADS  Google Scholar 

  7. S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of two-dimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)

    Article  ADS  Google Scholar 

  8. N. C. Osti, M. Naguib, A. Ostadhossein, Y. Xie, P. R. C. Kent, B. Dyatkin, G. Rother, W. T. Heller, A. C. T. van Duin, Y. Gogotsi, and E. Mamontov, Effect of metal ion intercalation on the structure of mxene and water dynamics on its internal surfaces, ACS Appl. Mater. Interfaces 8(14), 8859 (2016)

    Article  Google Scholar 

  9. Z. Zheng, R. Xu, K. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. H. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)

    Article  ADS  Google Scholar 

  10. K. Yamasue, H. Fukidome and K. Funakubo, Interfacial charge states in graphene on sic studied by noncontact scanning nonlinear dielectric potentiometry, Phys. Rev. lett. 114(22), 226103 (2015)

    Article  ADS  Google Scholar 

  11. L. Yin, J. Qiao, W. Wang, Z.D. Chu, K. F. Zhang, R.F. Dou, C. L. Gao, J.F. Jia, J.C. Nie, and L. He, Tuning structures and electronic spectra of graphene layers with tilt grain boundaries, Phys. Rev. B 89(20), 205410 (2014)

    Article  ADS  Google Scholar 

  12. Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019)

    Article  ADS  Google Scholar 

  13. H. Butt, B. Cappella, and M. Kappl, Force measurements with atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep. 59(1–6), 1 (2005)

    Article  ADS  Google Scholar 

  14. S. M. Hues, C. F. Draper, and R. J. Colton, Measurement of nanomechanical properties of metals using the atomic force microscope, J. Vac. Sci. Technol. B 12(3), 2211 (1994)

    Article  Google Scholar 

  15. N. Yang, K. K. H. Wong, J. R. De Bruyn, and J. L. Hutter, Frequency-dependent viscoelasticity measurement by atomic force microscopy, Meas. Sci. Technol. 20(2), 025703 (2009)

    Article  ADS  Google Scholar 

  16. R. M. Overney, E. Meyer, J. Frommer, H.J. Guentherodt, M. Fujihira, H. Takano, and Y. Gotoh, Force microscopy study of friction and elastic compliance of phase-separated organic thin films, Langmuir 10(4), 1281 (1994)

    Article  Google Scholar 

  17. R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Biophys. J. 86(3), 1777 (2004)

    Article  ADS  Google Scholar 

  18. P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2(2), 103 (1991)

    Article  ADS  Google Scholar 

  19. M. Kocun, A. Labuda, A. Gannepalli, and R. Proksch, Contact resonance atomic force microscopy imaging in air and water using photothermal excitation, Rev. Sci. Instrum. 86(8), 083706 (2015)

    Article  ADS  Google Scholar 

  20. X. Zhou, J. Fu, and F. Li, Contact resonance force microscopy for nanomechanical characterization: Accuracy and sensitivity, J. Appl. Phys. 114(6), 064301 (2013)

    Article  ADS  Google Scholar 

  21. G. Stan and S. D. Solares, Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies, Beilstein J. Nanotechnol. 5(1), 278 (2014)

    Article  Google Scholar 

  22. Q. Li, S. Jesse, A. Tselev, L. Collins, P. Yu, I. Kravchenko, S. V. Kalinin, and N. Balke, Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy, ACS Nano 9(2), 1848 (2015)

    Article  Google Scholar 

  23. Y. Gao, S. Kim, S. Zhou, H. C. Chiu, D. Nélias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in two-dimensional materials, Nat. Mater. 14(7), 714 (2015)

    Article  ADS  Google Scholar 

  24. U. Rabe, M. Kopycinska-Müller, and S. Hirsekorn, Atomic force acoustic microscopy, Nanosci. Technol. 15(4), 123 (2013)

    Article  Google Scholar 

  25. U. Rabe and W. Arnold, Acoustic microscopy by atomic force microscopy, Appl. Phys. Lett. 64(12), 1493 (1994)

    Article  ADS  Google Scholar 

  26. K. Yamanaka and S. Nakano, Ultrasonic atomic force microscope with overtone excitation of cantilever, Jpn. J. Appl. Phys. 35(Part 1, No. 6B), 3787 (1996)

    Article  ADS  Google Scholar 

  27. K. Yamanaka, K. Kobari, and T. Tsuji, Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements, Jpn. J. Appl. Phys. 47(7), 6070 (2008)

    Article  ADS  Google Scholar 

  28. D. G. Yablon, A. Gannepalli, R. Proksch, J. Killgore, D. C. Hurley, J. Grabowski, and A. H. Tsou, Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy, Macromolecules 45(10), 4363 (2012)

    Article  ADS  Google Scholar 

  29. D. C. Hurley, Scanning Probe Microscopy in Industrial Applications, John Wiley & Sons, Inc., 2013

  30. F. Marinello, D. Passeri, and E. Savio, Acoustic Scanning Probe Microscopy, Springer, Berlin, 2013

    Book  Google Scholar 

  31. D. C. Hurley, in: Applied Scanning Probe Methods Vol. XI, Springer Berlin Heidelberg, New York, 2009, pp 97–138

    Book  Google Scholar 

  32. M. Kopycinska-Müller, R. H. Geiss, and D. C. Hurley, Contact mechanics and tip shape in AFM-based nanomechanical measurements, Ultramicroscopy 106(6), 466 (2006)

    Article  Google Scholar 

  33. D. C. Hurley and J. A. Turner, Humidity effects on the determination of elastic properties by atomic force acoustic microscopy, J. Appl. Phys. 95(5), 2403 (2004)

    Article  ADS  Google Scholar 

  34. N. Hai, X. Li, and H. Gao, Elastic modulus of amorphous SiO2 nanowires, Appl. Phys. Lett. 88(4), 043108 (2006)

    Article  ADS  Google Scholar 

  35. M. Enachescu, R. J. A. van den Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, and M. Salmeron, Atomic force microscopy study of an ideally hard contact: The diamond (111)/tungsten carbide interface, Phys. Rev. Lett. 81(9), 1877 (1998)

    Article  ADS  Google Scholar 

  36. T. Pei, L. Bao, R. Ma, S. Song, B. Ge, L. Wu, Z. Zhou, G. Wang, H. Yang, J. Li, C. Gu, C. Shen, S. Du, and H. J. Gao, Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: In-plane electrical anisotropy and gate-tunable thermopower, Adv. Electron. Mater. 2(11), 1600292 (2016)

    Article  Google Scholar 

  37. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  38. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  39. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  40. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)

    Article  ADS  Google Scholar 

  41. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8), 081101 (2010)

    Article  ADS  Google Scholar 

  42. K. Jiri, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22(2), 1 (2010)

    Google Scholar 

  43. J. Klimes, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)

    Article  ADS  Google Scholar 

  44. W. J. Baumgardner, J. J. Choi, Y. F. Lim, and T. Hanrath, SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry, J. Am. Chem. Soc. 132(28), 9519 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Ministry of Science and Technology (MOST) of China (Grant Nos. 2016YFA0200700 and 2018YFE0202700), the National Natural Science Foundation of China (NSFC) (Grant Nos. 21622304, 61674045, 11604063, 11622437, 11974422, 61911540074, 11804247, and 61674171), Strategic Priority Research Program, Key Research Program of Frontier Sciences, and Instrument Developing Project of Chinese Academy of Sciences (CAS) (Grant Nos. XDB30000000, QYZDB-SSW-SYS031, and YZ201418). Z. H. Cheng was supported by Distinguished Technical Talents Project and Youth Innovation Promotion Association CAS, Fundamental Research Funds for the Central Universities, and Research Funds of Renmin University of China (Grant Nos. 18XNLG01 and 19XNQ025). Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China and Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ji or Zhi-Hai Cheng.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-0994-0.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, ZY., Pan, YH., Pei, TF. et al. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy. Front. Phys. 15, 63505 (2020). https://doi.org/10.1007/s11467-020-0994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0994-0

Keywords

Navigation