Skip to main content
Log in

Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Water electrolysis is to split water into hydrogen and oxygen using electricity as the driving force. To obtain low-cost hydrogen in a large scale, it is critical to develop electrocatalysts based on earth abundant elements with a high efficiency. This computational work started with Cobalt on CoTa2O6 surface as the active site, CoTa2O6/Graphene heterojunctions have been explored as potential oxygen evolution reaction (OER) catalysts through density functional theory (DFT). We demonstrated that the electron transfer (δ) from CoTa2O6 to graphene substrate can be utilized to boost the reactivity of Co-site, leading to an OER overpotential as low as 0.30 V when N-doped graphene is employed. Our findings offer novel design of heterojunctions as high performance OER catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)

    Article  Google Scholar 

  2. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser, The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis, ChemCatChem 2(7), 724 (2010)

    Article  Google Scholar 

  3. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355(6321), eaad4998 (2017)

    Article  Google Scholar 

  4. T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal. 2(8), 1765 (2012)

    Article  Google Scholar 

  5. X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, and W. Hu, Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution, Adv. Mater. 31(49), 1905622 (2019)

    Article  Google Scholar 

  6. S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, and Z. J. Xu, Shifting oxygen charge towards octahedral metal: A way to promote water oxidation on cobalt spinel oxides, Angew. Chem. Int. Ed. 58(18), 6042 (2019)

    Article  Google Scholar 

  7. Y. Duan, Z. Y. Yu, S. J. Hu, X. S. Zheng, C. T. Zhang, H. H. Ding, B. C. Hu, Q. Q. Fu, Z. L. Yu, X. Zheng, J. F. Zhu, M. R. Gao, and S. H. Yu, Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis, Angew. Chem. Int. Ed. 58(44), 15772 (2019)

    Article  Google Scholar 

  8. Y. Shao, X. Xiao, Y. P. Zhu, and T. Y. Ma, Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes, Angew. Chem. Int. Ed. 58(41), 14599 (2019)

    Article  Google Scholar 

  9. R. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, and B. Liu, Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction, Adv. Mater. 31(41), 1903909 (2019)

    Article  Google Scholar 

  10. Y. Zhang, Y. Guo, T. Liu, F. Feng, C. Wang, H. Hu, M. Wu, M. Ni, and Z. Shao, The synergistic effect accelerates the oxygen reduction/evolution reaction in a Zn-Air battery, Front. Chem. 7, 524 (2019)

    Article  ADS  Google Scholar 

  11. Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions, Chem. Soc. Rev. 44(8), 2060 (2015)

    Article  Google Scholar 

  12. Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, and S. Z. Qiao, Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction, J. Am. Chem. Soc. 133(50), 20116 (2011)

    Article  Google Scholar 

  13. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, and S. Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nat. Commun. 5(1), 3783 (2014)

    Article  ADS  Google Scholar 

  14. C. Meng, M. Lin, X. Sun, X. Chen, X. Chen, X. Du, and Y. Zhou, Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution, Chem. Commun. 55(20), 2904 (2019)

    Article  Google Scholar 

  15. Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng, X. Han, and W. Hu, Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction, Angew. Chem. Int. Ed. 59(18), 7245 (2020)

    Article  Google Scholar 

  16. Y. Xu, F. Zhang, T. Sheng, T. Ye, D. Yi, Y. Yang, S. Liu, X. Wang, and J. Yao, Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction, J. Mater. Chem. A 7(40), 23191 (2019)

    Article  Google Scholar 

  17. R. Wei, X. Bu, W. Gao, R A B. Villaos, G. Macam, Z. Q. Huang, C. Lan, F. C. Chuang, Y. Qu, and J. C. Ho, Engineering surface structure of spinel oxides via high-valent vanadium doping for remarkably enhanced electrocatalytic oxygen evolution reaction, ACS Appl. Mater. Interfaces 11(36), 33012 (2019)

    Article  Google Scholar 

  18. W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang, B. Li, C. Zhu, L. You, M. R. Gao, Z. Liu, S. H. Yu, and K. Zhou, Embedding ultrafine metal oxide nanoparticles in monolayered metal-organic framework nanosheets enables efficient electrocatalytic oxygen evolution, ACS Nano 14(2), 1971 (2020)

    Article  Google Scholar 

  19. L. Wen, X. Zhang, J. Liu, X. Li, C. Xing, X. Lyu, W. Cai, W. Wang, and Y. Li, Cr-dopant induced breaking of scaling relations in CoFe layered double hydroxides for improvement of oxygen evolution reaction, Small 15(35), 1902373 (2019)

    Article  Google Scholar 

  20. L. J. Enman, A. E. Vise, M. Burke Stevens, and S. W. Boettcher, Effects of metal electrode support on the catalytic activity of Fe(oxy)hydroxide for the oxygen evolution reaction in alkaline media, ChemPhysChem 20(22), 3089 (2019)

    Article  Google Scholar 

  21. F. Bizzotto, H. Ouhbi, Y. Fu, G. K. H. Wiberg, U. Aschauer, and M. Arenz, Examining the structure sensitivity of the oxygen evolution reaction on Pt single-crystal electrodes: A combined experimental and theoretical study, ChemPhysChem 20(22), 3154 (2019)

    Article  Google Scholar 

  22. S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Müller, U. Starke, K. Reuter, and B. V. Lotsch, Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium, Adv. Energy Mater. 9(15), 1803795 (2019)

    Article  Google Scholar 

  23. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie - Cryst. Mater. 220(5–6), 567 (2005)

    Article  ADS  Google Scholar 

  24. E. R. McNellis, J. Meyer, and K. Reuter, Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions, Phys. Rev. B 80(20), 205414 (2009)

    Article  ADS  Google Scholar 

  25. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)

    Article  ADS  Google Scholar 

  26. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  27. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys Rev B 13(12), 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate abinitio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  29. V. D. Mello, L. I. Zawislak, J. B. Marimon da Cunha, E. J. Kinast, J. B. Soares, and C. A. dos Santos, Structure and magnetic properties of layered (FexCo1−x)Ta2O6 compounds, J. Magn. Magn. Mater. 196–197, 846 (1999)

    Article  ADS  Google Scholar 

  30. I. S. Mulla, N. Natarajan, A. B. Gaikwad, V. Samuel, U. N. Guptha, and V. Ravi, A coprecipitation technique to prepare CoTa2O6 and CoNb2O6, Mater. Lett. 61(11–12), 2127 (2007)

    Article  Google Scholar 

  31. J. N. Reimers, J. E. Greedan, C. V. Stager, and R. Kremer, Crystal structure and magnetism in CoSb2O6 and CoTa2O6, J. Solid State Chem. 83(1), 20 (1989)

    Article  ADS  Google Scholar 

  32. R. K. Kremer, J. E. Greedan, E. Gmelin, W. Dai, M. A. White, S. M. Eicher, and K. J. Lushington, Specific heat of MTa2O6 (M = Co, Ni, Fe, Mg) evidence for low dimensional magnetism, J. Phys. Colloques 49(C8), C8–1495 (1988)

    Article  Google Scholar 

  33. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108(46), 17886 (2004)

    Article  Google Scholar 

  34. X. Cui, P. Ren, D. Deng, J. Deng, and X. Bao, Single layer graphene encapsulating non-precious metals as highperformance electrocatalysts for water oxidation, Energy Environ. Sci. 9(1), 123 (2016)

    Article  Google Scholar 

  35. T. Zhang, J. Du, P. Xi, and C. Xu, Hybrids of cobalt/iron phosphides derived from bimetal-organic frameworks as highly efficient electrocatalysts for oxygen evolution reaction, ACS Appl. Mater. Interfaces 9(1), 362 (2017)

    Article  Google Scholar 

  36. M. Asnavandi, Y. Yin, Y. Li, C. Sun, and C. Zhao, Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe-OOH catalysts, ACS Energy Lett. 3(7), 1515 (2018)

    Article  Google Scholar 

  37. W. Zhou, D. D. Huang, Y. P. Wu, J. Zhao, T. Wu, J. Zhang, D. S. Li, C. Sun, P. Feng, and X. Bu, Stable hierarchical bimetal-organic nanostructures as high perfor mance electrocatalysts for the oxygen evolution reaction, Angew. Chem. Int. Ed. 58(13), 4227 (2019)

    Article  Google Scholar 

  38. Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(4), 1790 (2010)

    Article  Google Scholar 

  39. Z. Wang, Z. X. Low, X. Zeng, B. Su, Y. Yin, C. Sun, T. Williams, H. Wang, and X. Zhang, Verticallyheterostructured TiO2-Ag-rGO ternary nanocomposite constructed with 001 facetted TiO2 nanosheets for enhanced Pt-free hydrogen production, Int. J. Hydrogen Energy 43(3), 1508 (2018)

    Article  Google Scholar 

  40. T. Liao, Z. Sun, C. Sun, S. X. Dou, and D. J. Searles, Electronic coupling and catalytic effect on H2 evolution of MoS2/graphene nanocatalyst, Sci. Rep. 4(1), 6256 (2015)

    Article  Google Scholar 

  41. B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu, and R. Wu, Anion-cation Co-substitution activation of spinel CoMoO4 for efficient oxygen evolution reaction, Chem. Eng. J. 394, 124926 (2020)

    Article  Google Scholar 

  42. M. Hu, S. Li, S. Zheng, X. Liang, J. Zheng, and F. Pan, Tuning single-atom catalysts of nitrogen-coordinated transition metals for optimizing oxygen evolution and reduction reactions, J. Phys. Chem. C 124(24), 13168 (2020)

    Article  Google Scholar 

  43. J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)

    Article  ADS  Google Scholar 

  44. J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Article  ADS  Google Scholar 

  45. Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B. J. and Q. L. acknowledge the support through the Australia Research Council Industrial Transformation Training Centres scheme (Grant No. IC180100005). The authors acknowledge the financial support by Guangdong Innovation Research Team for Higher Education (Grant No. 2017KCXTD030) and High-level Talents Project of Dongguan University of Technology (Grant No. KCYKYQD2017017) and Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes (Grant No. 2016GCZX009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siyao Qiu or Baohua Jia.

Additional information

Special Topic: Heterojunction and Its Applications (Ed. Chenghua Sun). This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-0999-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Qiu, S. & Jia, B. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction. Front. Phys. 16, 13503 (2021). https://doi.org/10.1007/s11467-020-0999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0999-8

Keywords

Navigation