Skip to main content
Log in

Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Recently, dry anaerobic co-digestion is one of the mechanisms which have been increasingly used to improve the reactor’s performance for treating livestock manure with agricultural crop residues. Due to carbohydrate, protein and lipid existing in agricultural wastes, biogas yield decreased with higher reactor volume when using wet anaerobic digestion. In this regard, the aim of this work was to achieve the production of biogas using the dry anaerobic technology through livestock manure co-digestion with agricultural waste (AW) such as potato peels, lettuce leaves and peas peels. The manure and AW were mixed at a ratio of 2:1 for 15 min before being introduced into the batch anaerobic system. The results indicated that the co-digestion of lettuce leaves and manure yielded the highest production of methane and biogas which were 6610.2 and 12756.7 ml, respectively, compared to the control (manure) that yielded 4689.9 ml and 11606.7 ml, respectively. Additionally, the results indicated that the co-digestion of lettuce leaves and manure yielded the highest specific production of methane and biogas which were 405.5 ml CH4 g−1 VS and 782.6 ml biogas g−1 VS, respectively, compared to the mono-digestion of manure (control) that yielded 328 ml CH4 g−1 VS and 633 ml biogas g−1 VS, respectively. Eventually, dry anaerobic co-digestion process is an effective approach to waste treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelsalam, E., Hijazi, O., Samer, M., Yacoub, I. H., Ali, A. S., Ahmed, R. H., et al. (2019). Life cycle assessment of the use of laser radiation in biogas production from anaerobic digestion of manure. Renewable Energy, 142, 130–136.

    CAS  Google Scholar 

  • Abdelsalam, E., Samer, M., Abdel-Hadi, M. A., Hassan, H. E., & Badr, Y. (2018). Influence of laser irradiation on rumen fluid for biogas production from dairy manure. Energy, 163, 404–415.

    CAS  Google Scholar 

  • Abdelsalam, E. M., El-Hussein, A., & Samer, M. (2020). Photobiostimulation of anaerobic digestion by laser irradiation and photocatalytic effects of trace metals and nanomaterials on biogas production. International Journal of Energy Research. https://doi.org/10.1002/er.5817.

    Article  Google Scholar 

  • Abdelsalam, E. M., & Samer, M. (2019). Biostimulation of anaerobic digestion using nanomaterials for increasing biogas production. Reviews in Environmental Science and Bio/Technology, 18(3), 525–541.

    CAS  Google Scholar 

  • Ali, A., Mahar, R. B., Abdelsalam, E. M., & Sherazi, S. T. H. (2019). Kinetic modeling for bioaugmented anaerobic digestion of the organic fraction of municipal solid waste by using Fe3O4 nanoparticles. Waste and Biomass Valorization, 10(11), 3213–3224.

    CAS  Google Scholar 

  • Alper, B., Recep, Ö. S., & Baris, C. (2017). Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresource Technology, 244, 816–823.

    Google Scholar 

  • André, L., Durante, M., Pauss, A., Lespinard, O., Ribeiro, T., & Lamy, E. (2015). Quantifying physical structure changes and non-uniform water flow in cattle manure during dry anaerobic digestion process at lab scale: Implication for biogas production. Bioresource Technology, 192, 660–669.

    Google Scholar 

  • Andréa, L., Zdanevitchb, I., Pineauc, C., Lencauchezd, J., Damianod, A., Pausse, A., et al. (2019). Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale. Bioresource Technology, 289, 121737.

    Google Scholar 

  • Anjum, M., Al-Makishah, N. H., & Barakat, M. A. (2016). Wastewater sludge stabilization using pre-treatment methods. Process Safety and Environmental Protection, 102, 615–632.

    CAS  Google Scholar 

  • Arelli, V., Begum, S., Anupoju, G. R., Kuruti, K., & Shailaja, S. (2018). Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure. Bioresource Technology, 253, 273–280.

    CAS  Google Scholar 

  • Bayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2017). Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresource Technology, 244, 816–823.

    CAS  Google Scholar 

  • Capson-Tojo, G., Rouez, M., Crest, M., Trably, E., Steyer, J., Bernet, N., et al. (2017). Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 69, 470–479.

    CAS  Google Scholar 

  • Chiu, S. L. H., & Lo, I. M. C. (2016). Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environmental Science and Pollution Research, 23, 24435–24450.

    CAS  Google Scholar 

  • Chiumenti, A., Borso, F., & Limina, S. (2018). Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Waste Management, 71, 704–710.

    CAS  Google Scholar 

  • Dima, A. D., Pârvulescu, O. C., Mateescu, C., & Dobre, T. (2020). Optimization of substrate composition in anaerobic co-digestion of agricultural waste using central composite design. Biomass and Bioenergy, 138, 105602.

    CAS  Google Scholar 

  • Eriksson, M., Osowski, C. P., Malefors, C., Björkman, J., & Eriksson, E. (2017). Quantification of food waste in public catering services—A case study from a Swedish municipality. Waste Management, 61, 415–422.

    Google Scholar 

  • FAO. (2013). Food wastage footprint: Impacts on natural resources. Rome: FAO.

    Google Scholar 

  • Gabriel, C. T., Eric, T., Maxime, R., Marion, C., Steyer, J. P., Delgenès, J. P., et al. (2017). Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresource Technology, 233, 166–175.

    Google Scholar 

  • Giuliano, A., Bolzonella, D., Pavan, P., Cavinato, C., & Cecchi, F. (2013). Co-digestion of livestock effluents, energy crops and agro-waste: Feeding and process optimization in mesophilic and thermophilic conditions. Bioresource Technology, 128, 612–618.

    CAS  Google Scholar 

  • Hijazi, O., Abdelsalam, E., Samer, M., Amer, B. M. A., Yacoub, I. H., Moselhy, M. A., et al. (2020b). Environmental impacts concerning the addition of trace metals in the process of biogas production from anaerobic digestion of slurry. Journal of Cleaner Production, 243, 118593.

    CAS  Google Scholar 

  • Hijazi, O., Abdelsalam, E., Samer, M., Attia, Y. A., Amer, B. M. A., Amer, M. A., et al. (2020a). Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure. Renewable Energy, 148, 417–424.

    CAS  Google Scholar 

  • Lehtomäki, A., Huttunen, S., & Rintala, J. A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling, 51(3), 591–609.

    Google Scholar 

  • Li, L., Xu, J., Wang, H., Liu, X., & Zhang, D. (2020). Study of the performance of biogas production by mixed fermentation of cow dung, deer manure, and mushroom fungus. Energy Science and Engineering, 8, 466–475.

    Google Scholar 

  • Matheri, A. N., Ndiweni, S. N., Belaid, M., Muzenda, E., & Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80, 756–764.

    Google Scholar 

  • Melikoglu, M., Lin, C. S. K., & Webb, C. (2013). Analysing global food waste problem: Pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3, 157–164.

    CAS  Google Scholar 

  • Meng, L., Jin, K., Yi, R., Chen, M., Peng, J., & Pan, Y. (2020). Enhancement of bioenergy recovery from agricultural wastes through recycling of cellulosic alcoholic fermentation vinasse for anaerobic co-digestion. Bioresource Technology, 311, 123511.

    CAS  Google Scholar 

  • Ning, J., Zhou, M., Pan, X., Li, C., Lv, N., Wang, T., et al. (2019). Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: Performance optimization and microbial community shift. Bioresource Technology, 282, 37–47.

    CAS  Google Scholar 

  • Pan, S., Lin, Y. J., Snyder, S. W., Ma, H., & Chiang, P. (2015). Development of low-carbon-driven bio-product technology using lignocellulosic substrates from agriculture: Challenges and perspectives. Current Sustainable /Renewable Energy Reports, 2, 145–154.

    Google Scholar 

  • Samer, M. (2010). A software program for planning and designing biogas plants. Transactions of the ASABE, 53(4), 1277–1285.

    Google Scholar 

  • Samer, M., Abdelaziz, S., Refai, M., & Abdelsalam, E. (2020). Techno-economic assessment of dry fermentation in household biogas units through co-digestion of manure and agricultural crop residues in Egypt. Renewable Energy, 149, 226–234.

    CAS  Google Scholar 

  • Samer, M., Helmy, K., Morsy, S., Assal, T., Amin, Y., Mohamed, S., et al. (2019). Cellphone application for computing biogas, methane and electrical energy production from different agricultural wastes. Computers and Electronics in Agriculture, 163, 104873.

    Google Scholar 

  • Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 178, 178–186.

    CAS  Google Scholar 

  • Shahriari, H., Warith, M., Hamoda, M., & Kennedy, K. J. (2012). Effect of leachate recirculation on mesophilic anaerobic digestion of food waste. Waste Management, 32, 400–403.

    CAS  Google Scholar 

  • Tayyab, A., Ahmad, Z., Mahmood, T., Khalid, A., Qadeer, S., Mahmood, S., et al. (2019). Anaerobic co-digestion of catering food waste utilizing Parthenium hysterophorus as co-substrate for biogas production. Biomass and Bioenergy, 124, 74–82.

    CAS  Google Scholar 

  • Wang, H., Xu, J., & J., Sheng, L., & Liu, X., (2018). Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy, 165, 411–418.

    CAS  Google Scholar 

  • Wu, X., Yao, W., Zhu, J., & Miller, C. (2010). Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresource Technology, 101, 4042–4047.

    CAS  Google Scholar 

  • Xu, L., Peng, S., Dong, D., Wang, C., Fan, W., Cao, Y., et al. (2019). Performance and microbial community analysis of dry anaerobic co-digestion of rice straw and cow manure with added limonite. Biomass and Bioenergy, 126, 41–46.

    CAS  Google Scholar 

  • Yang, T., Li, Y., Gao, J., Huang, C., Chen, B., Zhang, L., et al. (2015). Performance of dry anaerobic technology in the co-digestion of rural organic solid wastes in China. Energy, 93, 2497–2502.

    CAS  Google Scholar 

  • Zahan, Z., & Othman, M. Z. (2019). Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. Bioresource Technology, 281, 286–295.

    CAS  Google Scholar 

  • Zahan, Z., Othman, M. Z., & Muster, T. H. (2017). Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. Waste Management, 71, 663–674.

    Google Scholar 

  • Zhang, T., Liu, L., Song, Z., Ren, G., Feng, Y., Han, X., et al. (2013). Biogas production by codigestion of goat manure with three crop residues. PLoS ONE, 8(6), 668–685.

    Google Scholar 

  • Zhao, Y. B., Sun, F. R., Yu, J. D., Cai, Y. F., Luo, X. S., Cui, Z. J., et al. (2018). Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation. Bioresource Technology, 269, 143–152.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Science and Technology Development Fund (STDF) for funding the Project Number 30278, where this project is a subpart of the international project ERANETMED BIOGASMENA (Project ID 72-026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Essam M. Abdelsalam or Mohamed Samer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, E.M., Samer, M., Amer, M.A. et al. Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environ Dev Sustain 23, 8746–8757 (2021). https://doi.org/10.1007/s10668-020-00991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00991-9

Keywords

Navigation